Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A note on quadratic convergence of a smoothing Newton algorithm for the LCP

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

The linear complementarity problem (LCP) is to find \({(x,s)\in\mathfrak{R}^n\times\mathfrak{R}^n}\) such that (x, s) ≥ 0, s = Mx + q, x T s = 0 with \({M\in\mathfrak{R}^{n\times n}}\) and \({q\in\mathfrak{R}^n}\) . The smoothing Newton algorithm is one of the most efficient methods for solving the LCP. To the best of our knowledge, the best local convergence results of the smoothing Newton algorithm for the LCP up to now were obtained by Huang et al. (Math Program 99:423–441, 2004). In this note, by using a revised Chen–Harker–Kanzow–Smale smoothing function, we propose a variation of Huang–Qi–Sun’s algorithm and show that the algorithm possesses better local convergence properties than those given in Huang et al. (Math Program 99:423–441, 2004).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Clarke F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)

    MATH  Google Scholar 

  2. Hu S.L., Huang Z.H., Wang P.: A nonmonotone smoothing Newton algorithm for solving nonlinear complementarity problems. Optim. Methods Softw. 24(3), 447–460 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Huang Z.H.: Locating a maximally complementary solution of the monotone NCP by using non-interior-point smoothing algorithms. Math. Methods Oper. Res. 61, 41–55 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Huang Z.H., Qi L., Sun D.: Sub-quadratic convergence of a smoothing Newton algorithm for the P 0- and monotone LCP. Math. Program. 99, 423–441 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Huang Z.H., Sun J.: A non-interior continuation algorithm for the P 0 or P * LCP with strong global and local convergence properties. Appl. Math. Optim. 52, 237–262 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Huang Z.H., Xu S.W.: Convergence properties of a non-interior-point smoothing algorithm for the P* NCP. J. Ind. Manag. Optim. 3, 569–584 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Pardalos P.M., Rosen J.B.: Global optimization approach to the linear complementarity problem. SIAM J. Sci. Stat. Comput. 9, 341–353 (1988)

    Article  MathSciNet  Google Scholar 

  8. Pardalos P.M., Ye Y.: Class of linear complementarity problems solvable in polynomial time. Linear Algebra Appl. 152, 3–17 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  9. Pardalos P.M., Ye Y., Han C.-G., Kalinski J.: Solution of P-matrix linear complementarity problems using a potential reduction algorithm. SIAM J. Matrix Anal. Appl. 14, 1048–1060 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  10. Qi L., Sun J.: A nonsmooth version of Newtons method. Math. Program. 58, 353–367 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  11. Qi L., Sun D.: Improving the convergence of non-interior point algorithm for nonlinear complementarity problems. Math. Comput. 69, 283–304 (2000)

    MathSciNet  MATH  Google Scholar 

  12. Qi L., Sun D., Zhou G.: A new look at smoothing Newton methods for nonlinear complementarity problems and box constrained variational inequality problems. Math. Program. 87, 1–35 (2000)

    MathSciNet  MATH  Google Scholar 

  13. Sun D.: A regularization Newton method for solving nonlinear complementarity problems. Appl. Math. Optim. 36, 315–339 (1999)

    Article  Google Scholar 

  14. Zhao Y.B., Li D.: A globally and locally superlinearly convergent non-interior-point algorithm for P 0 LCPs. SIAM J. Optim. 13, 1196–1221 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng-Long Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ni, T., Hu, SL. A note on quadratic convergence of a smoothing Newton algorithm for the LCP. Optim Lett 7, 519–531 (2013). https://doi.org/10.1007/s11590-011-0436-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-011-0436-6

Keywords

Navigation