Abstract
Data envelopment analysis (DEA) evaluates the performance of decision making units (DMUs). When DEA models are used to calculate efficiency of DMUs, a number of them may have the equal efficiency 1. In order to choose a winner among DEA efficient candidates, some methods have been proposed. But most of these methods are not able to rank non-extreme efficient DMUs. Since, the researches performed about ranking of non-extreme efficient units are very limited, incomplete and with some difficulties, we are going to develop a new method to rank these DMUs in this paper. Therefore, we suppose that DMU o is a non-extreme efficient under evaluating DMU. In continue, by using “Representation Theorem”, DMU o can be represented as a convex combination of extreme efficient DMUs. So, we expect the performance of DMU o be similar to the performance of convex combination of these extreme efficient DMUs. Consequently, the ranking score of DMU o is calculated as a convex combination of ranking scores of these extreme efficient DMUs. So, the rank of this unit will be determined.
Similar content being viewed by others
References
Abello J.M., Pardalos P.M., Resende M.G.C.: Handbook of massive data sets. Kluwer, Dordrecht (2002)
Amirteimoori A., Jahanshahloo G.R., Kordrostami S.: Ranking of decision making units in data envelopment analysis. A distance-based approach. Appl. Math. Comput. 171, 122–135 (2005)
Anderson P., Petersen N.C.: A procedure for ranking efficient units in data envelopment analysis. Manag. Sci. 39(10), 1261–1264 (1993)
Banker R.D., Charnes A., Cooper W.W.: Some models for estimating technical and scale inefficiencies in data envelopment analysis. Manag. Sci. 30(9), 1078–1092 (1984)
Charnes A., Cooper W.W., Rhodes E.: Measuring the efficiency of decision making units. Eur. J. Oper. Res. 2, 429–444 (1978)
Chen L.-H., Wen Lu H.: An approximate approach for ranking fuzzy numbers based on left and right dominance. Comput. Math. Appl. 41, 1589–1602 (2001)
Cooper W., Seiford L., Tone K.: Data envelopment analysis a comprehensive text with models applications references, DEA solved software, 3rd printing. Kluwer, Dordrecht (2002)
Hang Z., Rousseau J.: Determining rates of change in data envelopment analysis. Oper. Res. Soc. 48, 591–599 (1997)
Hosseinzadeh Lotfi F., Noora A.A., Jahanshahloo G.R., Reshadi M.: One DEA ranking method based on applying aggregate units. Expert Syst. Appl. 38(10), 13468–13471 (2011)
Jahanshahloo G.R., Hosseinzadeh Lotfi F., Shoja N., Tohidi G., Razavian S.: Ranking using L 1 norm in data envelopment analysis. Appl. Math. Comput. 153(1), 215–224 (2004)
Jahanshahloo G.R., Sanei M., Hosseinzadeh Lotfi F., Shoja N.: Using the gradient line for ranking DMUs in DEA. Appl. Math. Comput. 151(1), 209–219 (2004)
Jahanshahloo G.R., Hosseinzadeh Lotfi F., Zhiani Rezai H., Rezai Balf F.: Using Mont Carlo method for ranking efficient DMUs. Appl. Math. Comput. 162(1), 371–379 (2005)
Jahanshahloo G.R., Afzalinejad M.: A ranking method based on a full-inefficient frontier. Appl. Math. Model. 30, 248–260 (2006)
Jahanshahloo G.R., Pourkarimi L., Zarepisheh M.: Modified MAJ model for ranking decision making units in data envelopment analysis. Appl. Math. Comput. 174, 1054–1059 (2006)
Jahanshahloo G.R., Hosseinzadeh Lotfi F., Khanmohammadi M., Kazemimanesh M., Rezai V.: Ranking of units by positive ideal DMU with common weights. Expert Syst. Appl. 37, 7483–7488 (2010)
Jahanshahloo G.R., Hosseinzadeh Lotfi F., Shoja N., Fallah Jelodar M., Gholam abri A.: Ranking extreme and non-extreme efficient decision making units in data envelopment analysis. Math. Comput. Appl. 15(2), 299–308 (2010)
Jahanshahloo G.R., Hosseinzadeh Lotfi F., Shoja N., Gholam Abri A., Fallah Jelodar M., Jamali Firouzabadi K.: Sensitivity analysis of inefficient units in data envelopment analysis. Math. Comput. Model. 53, 587–596 (2011)
Mehrabian S., Alirezaee M.R., Jahanshahloo G.R.: A complete efficiency ranking of decision making units in data envelopment analysis. Comput. Optim. Appl. 14, 261–266 (1999)
Mokhtar S.B., John J.J., Hanif D.S.: Linear programming and network flows. Wiley, New York (1990)
Pardalos P.M., Resende M.G.C.: Handbook of applied optimization. Oxford University Press, Oxford (2002)
Rezai Balf F., Zhiani Rezai H., Jahanshahloo G.R., Hosseinzadeh Lotfi F.: Ranking efficient DMUs using the Tchebycheff norm. Appl. Math. Model. 36, 45–56 (2012)
Ross A., Ernstberger K.: Benchmarking the IT productivity paradox: recent evidence from the manufacturing sector. Math. Comput. Model. 44, 30–42 (2006)
Saati M.S., Zarafat Angiz M., Jahanshahloo G.R.: A model for ranking decision making units in data envelopment analysis. Ricerca Operativa 31(97), 47–59 (2001)
Sexton T.R., Silkman R.H., Hogan A.J.: Data envelopment analysis: critique and extensions. In: Silkman, R.H. (ed) Measuring efficiency: an assessment of data envelopment analysis, pp. 73–105. Jossy-Bass, San Francisco (1986)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Gholam Abri, A., Jahanshahloo, G.R., Hosseinzadeh Lotfi, F. et al. A new method for ranking non-extreme efficient units in data envelopment analysis. Optim Lett 7, 309–324 (2013). https://doi.org/10.1007/s11590-011-0420-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11590-011-0420-1