Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Calmness and inverse image characterizations for Asplund spaces

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

We establish new characterizations of Asplund spaces in terms of conditions ensuring the calmness property for constraint set mappings and the validity of inverse image formula for a general constrained system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bonnans J.F., Shapiro A.: Perturbation analysis of optimization problems. Springer, Berlin (2000)

    MATH  Google Scholar 

  2. Chuong T.D., Kruger A.Y., Yao J.-C.: Calmness of efficient solution maps in parametric vector optimization. J. Global Optim. 51, 677–688 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Deng S.: Global error bounds for convex inequality systems in Banach spaces. SIAM J. Control. Optim. 36, 1240–1249 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Deville R., Godefroy G., Zizler V.: Smoothness and Renorming in Banach Spaces. Wiley, New York (1993)

    Google Scholar 

  5. Fabian M.: Gateaux differentiability of convex functions and topology. Weak asplund spaces. Wiley, New York (1997)

    MATH  Google Scholar 

  6. Giannessi F., Maugeri A., Pardalos M.P.: Equilibrium Problems: Nonsmooth optimization and variational inequality models. Kluwer Academic Publishers, Dordrecht (2002)

    Google Scholar 

  7. Henrion R., Outrata J.: A subdifferential condition for calmness of multifunctions. J. Math. Anal. Appl. 258, 110–130 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Henrion R., Jourani A., Outrata J.: On the calmness of a class of multifunctions. SIAM J. Optim. 13, 603–618 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Henrion R., Jourani A.: Subdfferential conditions for calmness of convex systems. SIAM J. Optim. 13, 520–534 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Henrion R., Outrata J.: Calmness of constraint systems with applications. Math. Program. 104, 437–464 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ioffe A.D.: Approximate subdifferentials and applications. I: The finite dimensional theory. Trans. Am. Math. Soc. 281, 389–415 (1984)

    MathSciNet  MATH  Google Scholar 

  12. Ioffe A.D.: Approximate subdifferentials and applications II. Mathematika 33, 11–128 (1986)

    Article  MathSciNet  Google Scholar 

  13. Ioffe A.D.: Approximate subdifferential and applications III. Mathematika 36, 1–38 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ioffe A.D.: Metric regularity and subdifferential calculus. Russ. Math. Surv. 55(3), 501–558 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ioffe A.D.: Codirectional compactness, metric regularity and subdifferential calculus. Can. Math. Soc. Conf. Proc. 27, 123–163 (2000)

    MathSciNet  Google Scholar 

  16. Ioffe A.D., Penot J.-P.: Subdifferentials of performance functions and calculus of coderivatives of set-valued mappings. Serdica Math. J. 22, 359–384 (1996)

    MathSciNet  MATH  Google Scholar 

  17. King A.J., Rockafellar R.T.: Sensitivity analysis for nonsmooth generalized equations. Math. Program. 55, 193–212 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mordukhovich, B.S.: Variational analysis and generalized differentiation. I. Basic theory. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 330. Springer, Berlin (2006)

  19. Mordukhovich, B.S.: Variational analysis and generalized differentiation. II. Applications. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 330, Springer, Berlin (2006)

  20. Ngai H.V., Théra M.: Metric inequality, subdifferential calculus and applications. Set-valued Anal. 9, 187–216 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. Pardalos P.M., Rassias T.M., Khan A.A.: Nonlinear analysis and variational problems. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  22. Penot J.-P.: Cooperative behavior for sets and relations. Math. Methods Oper. Res. 48, 229–246 (1988)

    MathSciNet  Google Scholar 

  23. Penot J.-P.: Subdifferential calculus without qualification conditions. J. Convex Anal. 3, 207–219 (1996)

    MathSciNet  MATH  Google Scholar 

  24. Penot J.-P: Compactness properties, openness criteria and coderivatives. Set-Valued Anal. 6, 363–380 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  25. Li S.J., Penot J.-P., Meng K.W.: Codifferential calculus. Set-Valued Var. Anal. 19(4), 505–536 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Phelps R.: Convex functions, monotone operators and differentiability, 2nd edn. Springer, Berlin (1993)

    MATH  Google Scholar 

  27. Song W.: Calmness and error bounds for convex constraint systems. SIAM J. Optim. 17, 353–371 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Yost D.: Asplund spaces for beginners. Acta Univ. Carolinae Ser. Math. Phys. 34, 159–177 (1993)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nooshin Movahedian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Movahedian, N. Calmness and inverse image characterizations for Asplund spaces. Optim Lett 7, 361–373 (2013). https://doi.org/10.1007/s11590-011-0424-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-011-0424-x

Keywords

Navigation