Abstract
We show that every maximally monotone operator of Fitzpatrick–Phelps type defined on a real Banach space must be of dense type. This provides an affirmative answer to a question posed by Stephen Simons in 2001 and implies that various important notions of monotonicity coincide.
Similar content being viewed by others
References
Bauschke, H.H., Borwein, J.M., Wang, X., Yao L.: For maximally monotone linear relations, dense type, negative-infimum type, and Fitzpatrick–Phelps type all coincide with monotonicity of the adjoint, submitted; http://arxiv.org/abs/1103.6239v1 (2011)
Bauschke H.H., Combettes P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, Berlin (2011)
Borwein J.M.: Maximal monotonicity via convex analysis. J. Convex Anal. 13, 561–586 (2006)
Borwein J.M.: Maximality of sums of two maximal monotone operators in general Banach space. Proc. Am. Math. Soc. 135, 3917–3924 (2007)
Borwein J.M.: Fifty years of maximal monotonicity. Optim. Lett. 4, 473–490 (2010)
Borwein J.M., Vanderwerff J.D.: Convex Functions. Cambridge University Press, Cambridge (2010)
Burachik R.S., Iusem A.N.: Set-Valued Mappings and Enlargements of Monotone Operators. Springer, Berlin (2008)
Fabian M., Habala P., Hájek P., Montesinos Santalucía V., Pelant J., Zizler V.: Functional Analysis and Infinite-Dimensional Geometry. Springer, Berlin (2001)
Fitzpatrick, S.: Representing monotone operators by convex functions. In: Workshop/Miniconference on Functional Analysis and Optimization (Canberra 1988). Proceedings of the Centre for Mathematical Analysis, vol. 20, pp. 59–65, Australian National University, Canberra, Australia (1988)
Fitzpatrick S., Phelps R.R.: Bounded approximants to monotone operators on Banach spaces. Annales de l’Institut Henri PoincaréAnalyse Non Linéaire 9, 573–595 (1992)
Gossez J.-P.: Opérateurs monotones non linéaires dans les espaces de Banach non réflexifs. J. Math. Anal. Appl. 34, 371–395 (1971)
Marques Alves M., Svaiter B.F.: On Gossez type (D) maximal monotone operators. J. Convex Anal. 17, 1077–1088 (2010)
Megginson R.E.: An Introduction to Banach Space Theory. Springer, Berlin (1998)
Phelps R.R.: Convex Functions, Monotone Operators and Differentiability, 2nd edn. Springer, Berlin (1993)
Phelps, R.R.: Lectures on maximal monotone operators, Extracta Mathematicae, vol. 12, pp. 193–230. http://arXiv.org/abs/math/9302209v1 (1997)
Rockafellar R.T., Wets R.J-B: Variational Analysis, 3rd edn. Springer, Berlin (2009)
Simons S.: The range of a monotone operator. J. Math. Anal. Appl. 199, 176–201 (1996)
Simons S.: Minimax and Monotonicity. Springer, Berlin (1998)
Simons S.: Five kinds of maximal monotonicity. Set-Valued Var. Anal. 9, 391–409 (2001)
Simons S.: From Hahn-Banach to Monotonicity. Springer, Berlin (2008)
Simons S.: Banach SSD Spaces and classes of monotone sets. J. Convex Anal. 18, 227–258 (2011)
Zălinescu C.: Convex Analysis in General Vector Spaces. World Scientific Publishing, New Jersey (2002)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Bauschke, H.H., Borwein, J.M., Wang, X. et al. Every maximally monotone operator of Fitzpatrick–Phelps type is actually of dense type. Optim Lett 6, 1875–1881 (2012). https://doi.org/10.1007/s11590-011-0383-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11590-011-0383-2