Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Every maximally monotone operator of Fitzpatrick–Phelps type is actually of dense type

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

We show that every maximally monotone operator of Fitzpatrick–Phelps type defined on a real Banach space must be of dense type. This provides an affirmative answer to a question posed by Stephen Simons in 2001 and implies that various important notions of monotonicity coincide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bauschke, H.H., Borwein, J.M., Wang, X., Yao L.: For maximally monotone linear relations, dense type, negative-infimum type, and Fitzpatrick–Phelps type all coincide with monotonicity of the adjoint, submitted; http://arxiv.org/abs/1103.6239v1 (2011)

  2. Bauschke H.H., Combettes P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  3. Borwein J.M.: Maximal monotonicity via convex analysis. J. Convex Anal. 13, 561–586 (2006)

    MathSciNet  MATH  Google Scholar 

  4. Borwein J.M.: Maximality of sums of two maximal monotone operators in general Banach space. Proc. Am. Math. Soc. 135, 3917–3924 (2007)

    Article  MATH  Google Scholar 

  5. Borwein J.M.: Fifty years of maximal monotonicity. Optim. Lett. 4, 473–490 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Borwein J.M., Vanderwerff J.D.: Convex Functions. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  7. Burachik R.S., Iusem A.N.: Set-Valued Mappings and Enlargements of Monotone Operators. Springer, Berlin (2008)

    Google Scholar 

  8. Fabian M., Habala P., Hájek P., Montesinos Santalucía V., Pelant J., Zizler V.: Functional Analysis and Infinite-Dimensional Geometry. Springer, Berlin (2001)

    MATH  Google Scholar 

  9. Fitzpatrick, S.: Representing monotone operators by convex functions. In: Workshop/Miniconference on Functional Analysis and Optimization (Canberra 1988). Proceedings of the Centre for Mathematical Analysis, vol. 20, pp. 59–65, Australian National University, Canberra, Australia (1988)

  10. Fitzpatrick S., Phelps R.R.: Bounded approximants to monotone operators on Banach spaces. Annales de l’Institut Henri PoincaréAnalyse Non Linéaire 9, 573–595 (1992)

    MathSciNet  MATH  Google Scholar 

  11. Gossez J.-P.: Opérateurs monotones non linéaires dans les espaces de Banach non réflexifs. J. Math. Anal. Appl. 34, 371–395 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  12. Marques Alves M., Svaiter B.F.: On Gossez type (D) maximal monotone operators. J. Convex Anal. 17, 1077–1088 (2010)

    MathSciNet  MATH  Google Scholar 

  13. Megginson R.E.: An Introduction to Banach Space Theory. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  14. Phelps R.R.: Convex Functions, Monotone Operators and Differentiability, 2nd edn. Springer, Berlin (1993)

    MATH  Google Scholar 

  15. Phelps, R.R.: Lectures on maximal monotone operators, Extracta Mathematicae, vol. 12, pp. 193–230. http://arXiv.org/abs/math/9302209v1 (1997)

  16. Rockafellar R.T., Wets R.J-B: Variational Analysis, 3rd edn. Springer, Berlin (2009)

    MATH  Google Scholar 

  17. Simons S.: The range of a monotone operator. J. Math. Anal. Appl. 199, 176–201 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  18. Simons S.: Minimax and Monotonicity. Springer, Berlin (1998)

    Google Scholar 

  19. Simons S.: Five kinds of maximal monotonicity. Set-Valued Var. Anal. 9, 391–409 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Simons S.: From Hahn-Banach to Monotonicity. Springer, Berlin (2008)

    MATH  Google Scholar 

  21. Simons S.: Banach SSD Spaces and classes of monotone sets. J. Convex Anal. 18, 227–258 (2011)

    MathSciNet  MATH  Google Scholar 

  22. Zălinescu C.: Convex Analysis in General Vector Spaces. World Scientific Publishing, New Jersey (2002)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liangjin Yao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bauschke, H.H., Borwein, J.M., Wang, X. et al. Every maximally monotone operator of Fitzpatrick–Phelps type is actually of dense type. Optim Lett 6, 1875–1881 (2012). https://doi.org/10.1007/s11590-011-0383-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-011-0383-2

Keywords

Navigation