Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Generation of networks with prescribed degree-dependent clustering

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

We propose a systematic, rigorous mathematical optimization methodology for the construction, “on demand,” of network structures that are guaranteed to possess a prescribed collective property: the degree-dependent clustering. The ability to generate such realizations of networks is important not only for creating artificial networks that can perform desired functions, but also to facilitate the study of networks as part of other algorithms. This problem exhibits large combinatorial complexity and is difficult to solve with off-the-shelf commercial optimization software. To that end, we also present a customized preprocessing algorithm that allows us to judiciously fix certain problem variables and, thus, significantly reduce computational times. Results from the application of the framework to data sets resulting from simulations of an acquaintance network formation model are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albert R., Barabási A.L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–97 (2002)

    Article  MATH  Google Scholar 

  2. Al-Khayyal F.A., Falk J.E.: Jointly constrained biconvex programming. Math. Oper. Res. 8, 273–286 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  3. Axelrod R.: The Complexity of Cooperation. Princeton University Press, Princeton (1997)

    Google Scholar 

  4. Balcan D., Colizza V., Gonçalves, Hu H., Ramasco J.J., Vespignani A.: Multiscale mobility networks and the spatial spreading of infectious diseases. Proc. Natl. Acad. Sci. USA 106, 21484–21489 (2009)

    Article  Google Scholar 

  5. Bansal S., Khandelwal S., Meyers L.A.: Exploring biological network structure with clustered random networks. BMC Bioinforma. 10, 405 (2009)

    Article  Google Scholar 

  6. Barabási A.L., Albert R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  7. Barrat A., Barthelemy M., Vespignani A.: Dynamical processes on complex networks. Cambridge University Press, New York (2008)

    Book  MATH  Google Scholar 

  8. Blitzstein, J., Diaconis, P.: A sequential importance sampling algorithm for generating random graphs with prescribed degrees. Unpublished paper (2006). http://nrs.harvard.edu/urn-3:HUL.InstRepos:2757225

  9. Boginski, V., Butenko, S., Pardalos, P.M.: Modeling and optimization in massive graphs. In: Pardalos, P.M., Wolkowitz, H. (eds.) Novel Approaches to Hard Discrete Optimization, vol. 37, pp. 17–39. American Mathematical Society, Fields Institute Communications, Providence (2003)

  10. Boginski V., Commander C.W.: Identifying critical nodes in protein–protein interaction networks. In: Butenko, S., Chaovalitwongse, W.A., Pardalos, P.M. (eds) Clustering Challenges in Biological Networks, pp. 153–167. World Scientific, Singapore (2009)

    Chapter  Google Scholar 

  11. Boguñá M., Pastor-Satorras R.: Epidemic spreading in correlated complex networks. Phys. Rev. E 66, 047104 (2002)

    Article  Google Scholar 

  12. Bollobas B.: A probabilistic proof of an asymptotic formula for the number of labelled regular graphs. Eur. J. Combin. 1, 311–316 (1980)

    MATH  MathSciNet  Google Scholar 

  13. Butenko S., Chaovalitwongse W.A., Pardalos P.M.: Clustering Challenges in Biological Networks. World Scientific, Singapore (2009)

    Book  Google Scholar 

  14. Callaway D.S., Hopcroft J.E., Kleinberg J.M, Newman M.E.J., Strogatz S.H.: Are randomly grown graphs really random. Phys. Rev. E 64, 041902 (2001)

    Article  Google Scholar 

  15. Calvo-Armengol A., Jackson M.O.: The effects of social networks on employment and inequality. Am. Econ. Rev. 94, 426–454 (2004)

    Article  Google Scholar 

  16. Chakrabarti, D., Zhan, Y., Faloutsos, C.: R-MAT: a recursive model for graph mining. In: Fourth SIAM International Conference on Data Mining (2004)

  17. Chung F., Lu L.: Connected components in random graphs with given expected degree sequences. Ann. Comb. 6, 125–145 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  18. IBM Corp.: IBM ILOG CPLEX V11.0. User’s Manual for CPLEX (2009)

  19. Davidsen J., Ebel H., Bornholdt S.: Emergence of a small world from local interactions: modeling acquaintance networks. Phys. Rev. Lett. 88, 128701 (2002)

    Article  Google Scholar 

  20. Dorogovtsev, S.N., Mendes, J.F.F., Samukhin, A.N.: How to construct a correlated net. Unpublished paper (2002) Available from: ArXiv Condensed Matter e-prints

  21. Erdös P., Rényi A.: On random graphs, I. Publ. Math-Debrecen 6, 290–297 (1959)

    MATH  MathSciNet  Google Scholar 

  22. Erdös P., Gallai T.: Graphs with prescribed degrees of vertices. Mat. Lapok 11, 264–274 (1960)

    Google Scholar 

  23. Faloutsos M., Faloutsos P., Faloutsos C.: On power-law relationships of the Internet topology. Comp. Comm. R. 29, 251–262 (1999)

    Article  Google Scholar 

  24. Floudas C.A.: Nonlinear and Mixed-Integer Optimization: Fundamentals and Applications. Oxford University Press, New York (1995)

    MATH  Google Scholar 

  25. Fu P., Liao K.: An evolving scale-free network with large clustering coefficient. Proc. Natl. Acad. Sci. USA 99, 7821–7826 (2002)

    Article  MathSciNet  Google Scholar 

  26. Hakimi S.L.: On realizability of a set of integers as degrees of the vertices of a linear graph. I. J. Soc. Ind. Appl. Math. 10, 496–506 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  27. Havel V.: A remark on the existence of finite graphs (in Czech). Casopis Pest. Mat. 80, 477–480 (1955)

    MATH  MathSciNet  Google Scholar 

  28. Jeong H., Tombor B., Albert R., Oltavi Z.N., Barabási A.L.: The large-scale organization of metabolic networks. Nature 407, 651–654 (2000)

    Article  Google Scholar 

  29. Kevrekidis I.G., Gear C.W., Hummer G.: Equation-free: the computer-aided analysis of complex multiscale systems. AIChE J. 50, 1346–1355 (2004)

    Article  Google Scholar 

  30. Kevrekidis I.G., Gear C.W., Hyman J.M., Kevrekidis P.G., Runborg O., Theodoropoulos C.: Equation-free, coarse-grained multiscale computation: enabling microscopic simulators to perform system-level analysis. Commun. Math. Sci. 1, 715–762 (2003)

    MATH  MathSciNet  Google Scholar 

  31. Kim B.J.: Performance of networks of artificial neurons: the role of clustering. Phys. Rev. E 69, 045101 (2004)

    Article  Google Scholar 

  32. Kingsford, C., Zaslavsky, E., Singh, M.: A compact mathematical programming formulation for DNA motif finding. In: Proceedings of the Combinatorial Pattern Matching. Lecture Notes in Computer Science, vol. 4009, pp. 233–245 (2006)

  33. McCormick G.P.: Computability of global solutions to factorable nonconvex programs. Part I. Convex underestimating problems. Math. Program. 10, 147–175 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  34. Nemhauser G.L., Wolsey L.A.: Integer and Combinatorial Optimization. Wiley, New York (1998)

    Google Scholar 

  35. Newman M.E.J.: The structure of scientific collaboration networks. Proc. Natl. Acad. Sci. USA 98, 404–409 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  36. Newman M.E.J.: Properties of highly clustered networks. Phys. Rev. E 68, 026121 (2003)

    Article  Google Scholar 

  37. Newman M.E.J.: The structure and function of complex networks. SIAM Rev. 45, 167–256 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  38. Newman M.E.J., Watts D.J., Strogatz S.H.: Random graph models of social networks. Proc. Natl. Acad. Sci. USA 99, 2566–2572 (2002)

    Article  MATH  Google Scholar 

  39. Nier E., Yang J., Yorulmazer T., Alentorn A.: Network models and financial stability. J. Econ. Dyn. Control 31, 2033–2060 (2007)

    Article  MATH  Google Scholar 

  40. Qiang Q., Nagurney A.: A unified network performance measure with importance identification and the ranking of network components. Optim. Lett. 2, 127–142 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  41. Ravasz E., Barabási A.L.: Hierarchical organization in complex networks. Phys. Rev. E 67, 026112 (2003)

    Article  Google Scholar 

  42. Qiang Q., Nagurney A., Rebennack S., Arulselvan A., Elefteriadou L., Pardalos P.M.: Complexity analysis for maximum flow problems with arc reversals. J. Comb. Optim. 19, 200–216 (2010)

    Article  MathSciNet  Google Scholar 

  43. Serrano M.A., Boguñá M.: Tuning clustering in random networks with arbitrary degree distributions. Phys. Rev. E 72, 036133 (2005)

    Article  Google Scholar 

  44. Sierskma G., Hoogeveen H.: Seven criteria for integer sequences being graphic. J. Graph Theor. 15, 223–231 (1991)

    Article  Google Scholar 

  45. Strogatz S.H.: Exploring complex networks. Nature 410, 268–276 (2001)

    Article  Google Scholar 

  46. Valente T.W.: Social network thresholds in the diffusion of innovations. Soc. Netw. 18, 441–458 (1996)

    Article  Google Scholar 

  47. Vazquez A., Boguñá M., Moreno Y., Pastor-Satorras R., Vespignani A.: Topology and correlations in structured scale-free networks. Phys. Rev. E 67, 046111 (2003)

    Article  Google Scholar 

  48. Vazquez A., Pastor-Satorras R., Vespignani A.: Large-scale topological and dynamical properties of the Internet. Phys. Rev. E 65, 066130 (2002)

    Article  Google Scholar 

  49. Volz E.: Random networks with tunable degree distribution and clustering. Phys. Rev. E 70, 056115 (2004)

    Article  Google Scholar 

  50. Watts D.J., Dodds P.S.: Influentials, networks, and public opinion formation. J. Consum. Res. 34, 441–458 (2007)

    Article  Google Scholar 

  51. Watts D.J., Strogatz S.H.: Collective dynamics of ’small-world’ networks. Nature 393, 440–442 (1998)

    Article  Google Scholar 

  52. Williams R.J., Martinez N.D.: Simple rules yield complex food webs. Nature 404, 180–183 (2000)

    Article  Google Scholar 

  53. Wormald N.C.: Some problems in the enumeration of labelled graphs. B. Aust. Math. Soc. 21, 159–160 (1980)

    Article  MATH  Google Scholar 

  54. Xanthopoulos, P., Arulselvan, A., Boginski, V., Pardalos, P.M.: A retrospective review of social networks. In: Advances in Social Networks Analysis and Mining (ASONAM-2009), pp. 300–305. IEEE Computer Society, USA (2009)

  55. Zaslavsky, E., Singh, M.: A combinatorial complex optimization approach for diverse motif finding applications. Algorithm. Mol. Biol. 1–13 (2006)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chrysanthos E. Gounaris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gounaris, C.E., Rajendran, K., Kevrekidis, I.G. et al. Generation of networks with prescribed degree-dependent clustering. Optim Lett 5, 435–451 (2011). https://doi.org/10.1007/s11590-011-0319-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-011-0319-x

Keywords

Navigation