Abstract
We propose a systematic, rigorous mathematical optimization methodology for the construction, “on demand,” of network structures that are guaranteed to possess a prescribed collective property: the degree-dependent clustering. The ability to generate such realizations of networks is important not only for creating artificial networks that can perform desired functions, but also to facilitate the study of networks as part of other algorithms. This problem exhibits large combinatorial complexity and is difficult to solve with off-the-shelf commercial optimization software. To that end, we also present a customized preprocessing algorithm that allows us to judiciously fix certain problem variables and, thus, significantly reduce computational times. Results from the application of the framework to data sets resulting from simulations of an acquaintance network formation model are presented.
Similar content being viewed by others
References
Albert R., Barabási A.L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–97 (2002)
Al-Khayyal F.A., Falk J.E.: Jointly constrained biconvex programming. Math. Oper. Res. 8, 273–286 (1983)
Axelrod R.: The Complexity of Cooperation. Princeton University Press, Princeton (1997)
Balcan D., Colizza V., Gonçalves, Hu H., Ramasco J.J., Vespignani A.: Multiscale mobility networks and the spatial spreading of infectious diseases. Proc. Natl. Acad. Sci. USA 106, 21484–21489 (2009)
Bansal S., Khandelwal S., Meyers L.A.: Exploring biological network structure with clustered random networks. BMC Bioinforma. 10, 405 (2009)
Barabási A.L., Albert R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)
Barrat A., Barthelemy M., Vespignani A.: Dynamical processes on complex networks. Cambridge University Press, New York (2008)
Blitzstein, J., Diaconis, P.: A sequential importance sampling algorithm for generating random graphs with prescribed degrees. Unpublished paper (2006). http://nrs.harvard.edu/urn-3:HUL.InstRepos:2757225
Boginski, V., Butenko, S., Pardalos, P.M.: Modeling and optimization in massive graphs. In: Pardalos, P.M., Wolkowitz, H. (eds.) Novel Approaches to Hard Discrete Optimization, vol. 37, pp. 17–39. American Mathematical Society, Fields Institute Communications, Providence (2003)
Boginski V., Commander C.W.: Identifying critical nodes in protein–protein interaction networks. In: Butenko, S., Chaovalitwongse, W.A., Pardalos, P.M. (eds) Clustering Challenges in Biological Networks, pp. 153–167. World Scientific, Singapore (2009)
Boguñá M., Pastor-Satorras R.: Epidemic spreading in correlated complex networks. Phys. Rev. E 66, 047104 (2002)
Bollobas B.: A probabilistic proof of an asymptotic formula for the number of labelled regular graphs. Eur. J. Combin. 1, 311–316 (1980)
Butenko S., Chaovalitwongse W.A., Pardalos P.M.: Clustering Challenges in Biological Networks. World Scientific, Singapore (2009)
Callaway D.S., Hopcroft J.E., Kleinberg J.M, Newman M.E.J., Strogatz S.H.: Are randomly grown graphs really random. Phys. Rev. E 64, 041902 (2001)
Calvo-Armengol A., Jackson M.O.: The effects of social networks on employment and inequality. Am. Econ. Rev. 94, 426–454 (2004)
Chakrabarti, D., Zhan, Y., Faloutsos, C.: R-MAT: a recursive model for graph mining. In: Fourth SIAM International Conference on Data Mining (2004)
Chung F., Lu L.: Connected components in random graphs with given expected degree sequences. Ann. Comb. 6, 125–145 (2002)
IBM Corp.: IBM ILOG CPLEX V11.0. User’s Manual for CPLEX (2009)
Davidsen J., Ebel H., Bornholdt S.: Emergence of a small world from local interactions: modeling acquaintance networks. Phys. Rev. Lett. 88, 128701 (2002)
Dorogovtsev, S.N., Mendes, J.F.F., Samukhin, A.N.: How to construct a correlated net. Unpublished paper (2002) Available from: ArXiv Condensed Matter e-prints
Erdös P., Rényi A.: On random graphs, I. Publ. Math-Debrecen 6, 290–297 (1959)
Erdös P., Gallai T.: Graphs with prescribed degrees of vertices. Mat. Lapok 11, 264–274 (1960)
Faloutsos M., Faloutsos P., Faloutsos C.: On power-law relationships of the Internet topology. Comp. Comm. R. 29, 251–262 (1999)
Floudas C.A.: Nonlinear and Mixed-Integer Optimization: Fundamentals and Applications. Oxford University Press, New York (1995)
Fu P., Liao K.: An evolving scale-free network with large clustering coefficient. Proc. Natl. Acad. Sci. USA 99, 7821–7826 (2002)
Hakimi S.L.: On realizability of a set of integers as degrees of the vertices of a linear graph. I. J. Soc. Ind. Appl. Math. 10, 496–506 (1962)
Havel V.: A remark on the existence of finite graphs (in Czech). Casopis Pest. Mat. 80, 477–480 (1955)
Jeong H., Tombor B., Albert R., Oltavi Z.N., Barabási A.L.: The large-scale organization of metabolic networks. Nature 407, 651–654 (2000)
Kevrekidis I.G., Gear C.W., Hummer G.: Equation-free: the computer-aided analysis of complex multiscale systems. AIChE J. 50, 1346–1355 (2004)
Kevrekidis I.G., Gear C.W., Hyman J.M., Kevrekidis P.G., Runborg O., Theodoropoulos C.: Equation-free, coarse-grained multiscale computation: enabling microscopic simulators to perform system-level analysis. Commun. Math. Sci. 1, 715–762 (2003)
Kim B.J.: Performance of networks of artificial neurons: the role of clustering. Phys. Rev. E 69, 045101 (2004)
Kingsford, C., Zaslavsky, E., Singh, M.: A compact mathematical programming formulation for DNA motif finding. In: Proceedings of the Combinatorial Pattern Matching. Lecture Notes in Computer Science, vol. 4009, pp. 233–245 (2006)
McCormick G.P.: Computability of global solutions to factorable nonconvex programs. Part I. Convex underestimating problems. Math. Program. 10, 147–175 (1976)
Nemhauser G.L., Wolsey L.A.: Integer and Combinatorial Optimization. Wiley, New York (1998)
Newman M.E.J.: The structure of scientific collaboration networks. Proc. Natl. Acad. Sci. USA 98, 404–409 (2001)
Newman M.E.J.: Properties of highly clustered networks. Phys. Rev. E 68, 026121 (2003)
Newman M.E.J.: The structure and function of complex networks. SIAM Rev. 45, 167–256 (2003)
Newman M.E.J., Watts D.J., Strogatz S.H.: Random graph models of social networks. Proc. Natl. Acad. Sci. USA 99, 2566–2572 (2002)
Nier E., Yang J., Yorulmazer T., Alentorn A.: Network models and financial stability. J. Econ. Dyn. Control 31, 2033–2060 (2007)
Qiang Q., Nagurney A.: A unified network performance measure with importance identification and the ranking of network components. Optim. Lett. 2, 127–142 (2008)
Ravasz E., Barabási A.L.: Hierarchical organization in complex networks. Phys. Rev. E 67, 026112 (2003)
Qiang Q., Nagurney A., Rebennack S., Arulselvan A., Elefteriadou L., Pardalos P.M.: Complexity analysis for maximum flow problems with arc reversals. J. Comb. Optim. 19, 200–216 (2010)
Serrano M.A., Boguñá M.: Tuning clustering in random networks with arbitrary degree distributions. Phys. Rev. E 72, 036133 (2005)
Sierskma G., Hoogeveen H.: Seven criteria for integer sequences being graphic. J. Graph Theor. 15, 223–231 (1991)
Strogatz S.H.: Exploring complex networks. Nature 410, 268–276 (2001)
Valente T.W.: Social network thresholds in the diffusion of innovations. Soc. Netw. 18, 441–458 (1996)
Vazquez A., Boguñá M., Moreno Y., Pastor-Satorras R., Vespignani A.: Topology and correlations in structured scale-free networks. Phys. Rev. E 67, 046111 (2003)
Vazquez A., Pastor-Satorras R., Vespignani A.: Large-scale topological and dynamical properties of the Internet. Phys. Rev. E 65, 066130 (2002)
Volz E.: Random networks with tunable degree distribution and clustering. Phys. Rev. E 70, 056115 (2004)
Watts D.J., Dodds P.S.: Influentials, networks, and public opinion formation. J. Consum. Res. 34, 441–458 (2007)
Watts D.J., Strogatz S.H.: Collective dynamics of ’small-world’ networks. Nature 393, 440–442 (1998)
Williams R.J., Martinez N.D.: Simple rules yield complex food webs. Nature 404, 180–183 (2000)
Wormald N.C.: Some problems in the enumeration of labelled graphs. B. Aust. Math. Soc. 21, 159–160 (1980)
Xanthopoulos, P., Arulselvan, A., Boginski, V., Pardalos, P.M.: A retrospective review of social networks. In: Advances in Social Networks Analysis and Mining (ASONAM-2009), pp. 300–305. IEEE Computer Society, USA (2009)
Zaslavsky, E., Singh, M.: A combinatorial complex optimization approach for diverse motif finding applications. Algorithm. Mol. Biol. 1–13 (2006)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Gounaris, C.E., Rajendran, K., Kevrekidis, I.G. et al. Generation of networks with prescribed degree-dependent clustering. Optim Lett 5, 435–451 (2011). https://doi.org/10.1007/s11590-011-0319-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11590-011-0319-x