Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Electrochemical detection of aqueous nitrite based on poly(aniline-co-o-aminophenol)-modified glassy carbon electrode

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Nitrite is a common contaminant in drinking water and groundwater with high environmental and health risks. Electrochemical sensing method is a selective and easy technique to detect nitrite in water. In this study, we report a research about a poly(aniline-co-o-aminophenol)-modified glassy carbon electrode (PAOA/GCE) for aqueous nitrite detection. With stable redox activity and conductivity in a wide pH range compared with polyaniline, PAOA is suitable to be used as electrode material in a neutral medium. The PAOA/GCE was prepared by cyclic voltammogram method by electrochemical copolymerization of o-aminophenol and aniline. SEM and FT-IR results proved the formation of PAOA, and the electrode exhibited higher responses toward nitrite oxidation compared with polyaniline-modified GCE and bare GCE. We also studied the impact of scan rate, pH, and temperature on nitrite detection. The PAOA/GCE could be used in a wide pH range from 2 to 8 and used to detect nitrite in the linear range from 5.0 × 10−6 to 2.0 × 10−3 M with the detection limit of 2 × 10−6 M. Its excellent reproducibility, stability, and anti-interference ability make it a promising electrode in detecting aqueous nitrite in drinking water and groundwater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gulis G, Czompolyova M, Cerhan JR (2002) An ecologic study of nitrate in municipal drinking water and cancer incidence in Trnava District, Slovakia. Environ Res 88(3):182–187. doi:10.1006/enrs.2002.4331

    Article  CAS  Google Scholar 

  2. Comly HH (1945) Cyanosis in infants caused by nitrates in well water. JAMA 129(2):112–116

    Article  CAS  Google Scholar 

  3. Magee PN, Barnes JM (1956) The production of malignant primary hepatic tumours in the rat by feeding dimethylnitrosamine. Br J Cancer 10(1):114–122. doi:10.1038/bjc.1956.15

    Article  CAS  Google Scholar 

  4. Bruningfann CS, Kaneene JB (1993) The effects of nitrate, nitrite and n-nitroso compounds on human health—a review. Vet Hum Toxicol 35(6):521–538

    CAS  Google Scholar 

  5. WHO (2011) Guidelines for drinking-water quality, 4th edn. World Health Organization, Geneva

    Google Scholar 

  6. Jayawardane BM, Wei S, McKelvie ID, Kolev SD (2014) Microfluidic paper-based analytical device for the determination of nitrite and nitrate. Anal Chem 86(15):7274–7279. doi:10.1021/ac5013249

    Article  CAS  Google Scholar 

  7. Yang S, Wo YQ, Meyerhoff ME (2014) Polymeric optical sensors for selective and sensitive nitrite detection using cobalt(III) corrole and rhodium(III) porphyrin as ionophores. Anal Chim Acta 843:89–96. doi:10.1016/j.aca.2014.06.041

    Article  CAS  Google Scholar 

  8. Wang X, Adams E, Van Schepdael A (2012) A fast and sensitive method for the determination of nitrite in human plasma by capillary electrophoresis with fluorescence detection. Talanta 97:142–144. doi:10.1016/j.talanta.2012.04.008

    Article  CAS  Google Scholar 

  9. Ning DL, Zhang HF, Zheng JB (2014) Electrochemical sensor for sensitive determination of nitrite based on the PAMAM dendrimer-stabilized silver nanoparticles. J Electroanal Chem 717:29–33. doi:10.1016/j.jelechem.2013.12.011

    Article  Google Scholar 

  10. Li YH, Wang HB, Liu XS, Guo L, Ji XL, Wang L, Tian DN, Yang XH (2014) Nonenzymatic nitrite sensor based on a titanium dioxide nanoparticles/ionic liquid composite electrode. J Electroanal Chem 719:35–40. doi:10.1016/j.jelechem.2014.02.006

    Article  CAS  Google Scholar 

  11. Radhakrishnan S, Krishnamoorthy K, Sekar C, Wilson J, Kim SJ (2014) A highly sensitive electrochemical sensor for nitrite detection based on Fe2O3 nanoparticles decorated reduced graphene oxide nanosheets. Appl Catal B Environ 148:22–28. doi:10.1016/j.apcatb.2013.10.044

    Article  Google Scholar 

  12. Dong H, Fang Z, Yang T, Yu YG, Wang DH, Chou KC, Hou XM (2016) Single crystalline 3C-SiC whiskers used for electrochemical detection of nitrite under neutral condition. Ionics 22(8):1493–1500. doi:10.1007/s11581-016-1666-5

    Article  CAS  Google Scholar 

  13. Bobacka J (2006) Conducting polymer-based solid-state ion-selective electrodes. Electroanalysis 18(1):7–18. doi:10.1002/elan.200503384

    Article  CAS  Google Scholar 

  14. Rahman MA, Kumar P, Park D-S, Shim Y-B (2008) Electrochemical sensors based on organic conjugated polymers. Sensors 8(1):118–141. doi:10.3390/s8010118

    Article  CAS  Google Scholar 

  15. Hangarter CM, Chartuprayoon N, Hernandez SC, Choa Y, Myung NV (2013) Hybridized conducting polymer chemiresistive nano-sensors. Nano Today 8(1):39–55. doi:10.1016/j.nantod.2012.12.005

    Article  CAS  Google Scholar 

  16. Janaky C, Visy C (2013) Conducting polymer-based hybrid assemblies for electrochemical sensing: a materials science perspective. Anal Bioanal Chem 405(11):3489–3511. doi:10.1007/s00216-013-6702-y

    Article  CAS  Google Scholar 

  17. Guo ML, Chen JH, Li J, Tao B, Yao SZ (2005) Fabrication of polyaniline/carbon nanotube composite modified electrode and its electrocatalytic property to the reduction of nitrite. Anal Chim Acta 532(1):71–77. doi:10.1016/j.aca.2004.10.045

    Article  CAS  Google Scholar 

  18. Wang F, Wang W, Liu B, Wang Z, Zhang Z (2009) Copolypeptide-doped polyaniline nanofibers for electrochemical detection of ultratrace trinitrotoluene. Talanta 79(2):376–382. doi:10.1016/j.talanta.2009.03.062

    Article  CAS  Google Scholar 

  19. Ebrahim S, El-Raey R, Hefnawy A, Ibrahim H, Soliman M, Abdel-Fattah TM (2014) Electrochemical sensor based on polyaniline nanofibers/single wall carbon nanotubes composite for detection of malathion. Synth Met 190:13–19. doi:10.1016/j.synthmet.2014.01.021

    Article  CAS  Google Scholar 

  20. Zhang Y, Chen P, Wen FF, Huang C, Wang HG (2016) Construction of polyaniline/molybdenum sulfide nanocomposite: characterization and its electrocatalytic performance on nitrite. Ionics 22(7):1095–1102. doi:10.1007/s11581-015-1634-5

    Article  CAS  Google Scholar 

  21. Mu SL (2004) Electrochemical copolymerization of aniline and o-aminophenol. Synth Met 143(3):259–268. doi:10.1016/j.synthmet.2003.12.008

    Article  CAS  Google Scholar 

  22. Zhang Y, Mu SL, Deng BL, Zheng JZ (2010) Electrochemical removal and release of perchlorate using poly(aniline-co-o-aminophenol). J Electroanal Chem 641(1–2):1–6. doi:10.1016/j.jelechem.2010.01.021

    Article  CAS  Google Scholar 

  23. Cui H, Qian Y, An H, Sun C, Zhai J, Li Q (2012) Electrochemical removal of fluoride from water by PAOA-modified carbon felt electrodes in a continuous flow reactor. Water Res 46(12):3943–3950. doi:10.1016/j.watres.2012.04.039

    Article  CAS  Google Scholar 

  24. Wen ZH, Kang TF (2004) Determination of nitrite using sensors based on nickel phthalocyanine polymer modified electrodes. Talanta 62(2):351–355. doi:10.1016/j.talanta.2003.08.003

    Article  CAS  Google Scholar 

  25. Laviron E, Roullier L (1980) General expression of the linear potential sweep voltammogram for a surface redox reaction with interactions between the adsorbed molecules—applications to modified electrodes. J Electroanal Chem 115(1):65–74. doi:10.1016/s0022-0728(80)80496-7

    Article  CAS  Google Scholar 

  26. Wang H, Yang P-H, Cai H-H, Cai J (2012) Constructions of polyaniline nanofiber-based electrochemical sensor for specific detection of nitrite and sensitive monitoring of ascorbic acid scavenging nitrite. Synth Met 162(3–4):326–331. doi:10.1016/j.synthmet.2011.12.013

    Article  CAS  Google Scholar 

  27. Yang YF, Mu SL (2011) Poly(aniline-co-o-aminophenol): in situ electrochemical-ESR measurements in aqueous solutions and as a probe of radical scavengers. J Phys Chem C 115(38):18721–18728. doi:10.1021/jp205485z

    Article  CAS  Google Scholar 

  28. Zhang Y, Yin J, Wang K, Chen P, Ji L (2013) Electrocatalysis and detection of nitrite on a polyaniline-Cu nanocomposite-modified glassy carbon electrode. J Appl Polym Sci 128(5):2971–2976. doi:10.1002/app.38466

    Article  CAS  Google Scholar 

  29. Mu SL (2009) Direct determination of arsenate based on its electrocatalytic reduction at the poly(aniline-co-o-aminophenol) electrode. Electrochem Commun 11(7):1519–1522. doi:10.1016/j.elecom.2009.05.050

    Article  CAS  Google Scholar 

  30. Mahmoudian MR, Alias Y, Basirun WJ, MengWoi P, Jamali-Sheini F, Sookhakian M, Silakhori M (2015) A sensitive electrochemical nitrate sensor based on polypyrrole coated palladium nanoclusters. J Electroanal Chem 751:30–36. doi:10.1016/j.jelechem.2015.05.026

    Article  CAS  Google Scholar 

  31. Zhang O, Wen Y, Xu J, Lu L, Duan X, Yu H (2013) One-step synthesis of poly(3,4-ethylenedioxythiophene)-Au composites and their application for the detection of nitrite. Synth Met 164:47–51. doi:10.1016/j.synthmet.2012.11.013

    Article  CAS  Google Scholar 

  32. Cao X, Xu Y, Wang N (2012) Hollow Fe2O3 polyhedrons: one-pot synthesis and their use as electrochemical material for nitrite sensing. Electrochim Acta 59:81–85. doi:10.1016/j.electacta.2011.10.039

    Article  CAS  Google Scholar 

  33. Zhang Y, Wen FF, Jiang Y, Wang L, Zhou CH, Wang HG (2014) Layer-by-layer construction of caterpillar-like reduced graphene oxide-poly(aniline-co-o-aminophenol)-Pd nanofiber on glassy carbon electrode and its application as a bromate sensor. Electrochim Acta 115:504–510. doi:10.1016/j.electacta.2013.10.143

    Article  CAS  Google Scholar 

  34. Papagianni GG, Stergiou DV, Armatas GS, Kanatzidis MG, Prodromidis MI (2012) Synthesis, characterization and performance of polyaniline–polyoxometalates (XM12, X = P, Si and M = Mo, W) composites as electrocatalysts of bromates. Sensors Actuators B Chem 173:346–353. doi:10.1016/j.snb.2012.07.020

    Article  CAS  Google Scholar 

  35. Ding B, Wang H, Tao S, Wang Y, Qiu J (2016) Preparing electrochemical active hierarchically porous carbons for detecting nitrite in drinkable water. RSC Adv 6(9):7302–7309. doi:10.1039/c5ra22116a

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (grant 51508263) and the Natural Science Foundation of Jiangsu Province, China (grant BK20140607).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Pan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Cui, H., An, H. et al. Electrochemical detection of aqueous nitrite based on poly(aniline-co-o-aminophenol)-modified glassy carbon electrode. Ionics 23, 1517–1523 (2017). https://doi.org/10.1007/s11581-017-1972-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-1972-6

Keywords

Navigation