Abstract
Nitrite is a common contaminant in drinking water and groundwater with high environmental and health risks. Electrochemical sensing method is a selective and easy technique to detect nitrite in water. In this study, we report a research about a poly(aniline-co-o-aminophenol)-modified glassy carbon electrode (PAOA/GCE) for aqueous nitrite detection. With stable redox activity and conductivity in a wide pH range compared with polyaniline, PAOA is suitable to be used as electrode material in a neutral medium. The PAOA/GCE was prepared by cyclic voltammogram method by electrochemical copolymerization of o-aminophenol and aniline. SEM and FT-IR results proved the formation of PAOA, and the electrode exhibited higher responses toward nitrite oxidation compared with polyaniline-modified GCE and bare GCE. We also studied the impact of scan rate, pH, and temperature on nitrite detection. The PAOA/GCE could be used in a wide pH range from 2 to 8 and used to detect nitrite in the linear range from 5.0 × 10−6 to 2.0 × 10−3 M with the detection limit of 2 × 10−6 M. Its excellent reproducibility, stability, and anti-interference ability make it a promising electrode in detecting aqueous nitrite in drinking water and groundwater.
Similar content being viewed by others
References
Gulis G, Czompolyova M, Cerhan JR (2002) An ecologic study of nitrate in municipal drinking water and cancer incidence in Trnava District, Slovakia. Environ Res 88(3):182–187. doi:10.1006/enrs.2002.4331
Comly HH (1945) Cyanosis in infants caused by nitrates in well water. JAMA 129(2):112–116
Magee PN, Barnes JM (1956) The production of malignant primary hepatic tumours in the rat by feeding dimethylnitrosamine. Br J Cancer 10(1):114–122. doi:10.1038/bjc.1956.15
Bruningfann CS, Kaneene JB (1993) The effects of nitrate, nitrite and n-nitroso compounds on human health—a review. Vet Hum Toxicol 35(6):521–538
WHO (2011) Guidelines for drinking-water quality, 4th edn. World Health Organization, Geneva
Jayawardane BM, Wei S, McKelvie ID, Kolev SD (2014) Microfluidic paper-based analytical device for the determination of nitrite and nitrate. Anal Chem 86(15):7274–7279. doi:10.1021/ac5013249
Yang S, Wo YQ, Meyerhoff ME (2014) Polymeric optical sensors for selective and sensitive nitrite detection using cobalt(III) corrole and rhodium(III) porphyrin as ionophores. Anal Chim Acta 843:89–96. doi:10.1016/j.aca.2014.06.041
Wang X, Adams E, Van Schepdael A (2012) A fast and sensitive method for the determination of nitrite in human plasma by capillary electrophoresis with fluorescence detection. Talanta 97:142–144. doi:10.1016/j.talanta.2012.04.008
Ning DL, Zhang HF, Zheng JB (2014) Electrochemical sensor for sensitive determination of nitrite based on the PAMAM dendrimer-stabilized silver nanoparticles. J Electroanal Chem 717:29–33. doi:10.1016/j.jelechem.2013.12.011
Li YH, Wang HB, Liu XS, Guo L, Ji XL, Wang L, Tian DN, Yang XH (2014) Nonenzymatic nitrite sensor based on a titanium dioxide nanoparticles/ionic liquid composite electrode. J Electroanal Chem 719:35–40. doi:10.1016/j.jelechem.2014.02.006
Radhakrishnan S, Krishnamoorthy K, Sekar C, Wilson J, Kim SJ (2014) A highly sensitive electrochemical sensor for nitrite detection based on Fe2O3 nanoparticles decorated reduced graphene oxide nanosheets. Appl Catal B Environ 148:22–28. doi:10.1016/j.apcatb.2013.10.044
Dong H, Fang Z, Yang T, Yu YG, Wang DH, Chou KC, Hou XM (2016) Single crystalline 3C-SiC whiskers used for electrochemical detection of nitrite under neutral condition. Ionics 22(8):1493–1500. doi:10.1007/s11581-016-1666-5
Bobacka J (2006) Conducting polymer-based solid-state ion-selective electrodes. Electroanalysis 18(1):7–18. doi:10.1002/elan.200503384
Rahman MA, Kumar P, Park D-S, Shim Y-B (2008) Electrochemical sensors based on organic conjugated polymers. Sensors 8(1):118–141. doi:10.3390/s8010118
Hangarter CM, Chartuprayoon N, Hernandez SC, Choa Y, Myung NV (2013) Hybridized conducting polymer chemiresistive nano-sensors. Nano Today 8(1):39–55. doi:10.1016/j.nantod.2012.12.005
Janaky C, Visy C (2013) Conducting polymer-based hybrid assemblies for electrochemical sensing: a materials science perspective. Anal Bioanal Chem 405(11):3489–3511. doi:10.1007/s00216-013-6702-y
Guo ML, Chen JH, Li J, Tao B, Yao SZ (2005) Fabrication of polyaniline/carbon nanotube composite modified electrode and its electrocatalytic property to the reduction of nitrite. Anal Chim Acta 532(1):71–77. doi:10.1016/j.aca.2004.10.045
Wang F, Wang W, Liu B, Wang Z, Zhang Z (2009) Copolypeptide-doped polyaniline nanofibers for electrochemical detection of ultratrace trinitrotoluene. Talanta 79(2):376–382. doi:10.1016/j.talanta.2009.03.062
Ebrahim S, El-Raey R, Hefnawy A, Ibrahim H, Soliman M, Abdel-Fattah TM (2014) Electrochemical sensor based on polyaniline nanofibers/single wall carbon nanotubes composite for detection of malathion. Synth Met 190:13–19. doi:10.1016/j.synthmet.2014.01.021
Zhang Y, Chen P, Wen FF, Huang C, Wang HG (2016) Construction of polyaniline/molybdenum sulfide nanocomposite: characterization and its electrocatalytic performance on nitrite. Ionics 22(7):1095–1102. doi:10.1007/s11581-015-1634-5
Mu SL (2004) Electrochemical copolymerization of aniline and o-aminophenol. Synth Met 143(3):259–268. doi:10.1016/j.synthmet.2003.12.008
Zhang Y, Mu SL, Deng BL, Zheng JZ (2010) Electrochemical removal and release of perchlorate using poly(aniline-co-o-aminophenol). J Electroanal Chem 641(1–2):1–6. doi:10.1016/j.jelechem.2010.01.021
Cui H, Qian Y, An H, Sun C, Zhai J, Li Q (2012) Electrochemical removal of fluoride from water by PAOA-modified carbon felt electrodes in a continuous flow reactor. Water Res 46(12):3943–3950. doi:10.1016/j.watres.2012.04.039
Wen ZH, Kang TF (2004) Determination of nitrite using sensors based on nickel phthalocyanine polymer modified electrodes. Talanta 62(2):351–355. doi:10.1016/j.talanta.2003.08.003
Laviron E, Roullier L (1980) General expression of the linear potential sweep voltammogram for a surface redox reaction with interactions between the adsorbed molecules—applications to modified electrodes. J Electroanal Chem 115(1):65–74. doi:10.1016/s0022-0728(80)80496-7
Wang H, Yang P-H, Cai H-H, Cai J (2012) Constructions of polyaniline nanofiber-based electrochemical sensor for specific detection of nitrite and sensitive monitoring of ascorbic acid scavenging nitrite. Synth Met 162(3–4):326–331. doi:10.1016/j.synthmet.2011.12.013
Yang YF, Mu SL (2011) Poly(aniline-co-o-aminophenol): in situ electrochemical-ESR measurements in aqueous solutions and as a probe of radical scavengers. J Phys Chem C 115(38):18721–18728. doi:10.1021/jp205485z
Zhang Y, Yin J, Wang K, Chen P, Ji L (2013) Electrocatalysis and detection of nitrite on a polyaniline-Cu nanocomposite-modified glassy carbon electrode. J Appl Polym Sci 128(5):2971–2976. doi:10.1002/app.38466
Mu SL (2009) Direct determination of arsenate based on its electrocatalytic reduction at the poly(aniline-co-o-aminophenol) electrode. Electrochem Commun 11(7):1519–1522. doi:10.1016/j.elecom.2009.05.050
Mahmoudian MR, Alias Y, Basirun WJ, MengWoi P, Jamali-Sheini F, Sookhakian M, Silakhori M (2015) A sensitive electrochemical nitrate sensor based on polypyrrole coated palladium nanoclusters. J Electroanal Chem 751:30–36. doi:10.1016/j.jelechem.2015.05.026
Zhang O, Wen Y, Xu J, Lu L, Duan X, Yu H (2013) One-step synthesis of poly(3,4-ethylenedioxythiophene)-Au composites and their application for the detection of nitrite. Synth Met 164:47–51. doi:10.1016/j.synthmet.2012.11.013
Cao X, Xu Y, Wang N (2012) Hollow Fe2O3 polyhedrons: one-pot synthesis and their use as electrochemical material for nitrite sensing. Electrochim Acta 59:81–85. doi:10.1016/j.electacta.2011.10.039
Zhang Y, Wen FF, Jiang Y, Wang L, Zhou CH, Wang HG (2014) Layer-by-layer construction of caterpillar-like reduced graphene oxide-poly(aniline-co-o-aminophenol)-Pd nanofiber on glassy carbon electrode and its application as a bromate sensor. Electrochim Acta 115:504–510. doi:10.1016/j.electacta.2013.10.143
Papagianni GG, Stergiou DV, Armatas GS, Kanatzidis MG, Prodromidis MI (2012) Synthesis, characterization and performance of polyaniline–polyoxometalates (XM12, X = P, Si and M = Mo, W) composites as electrocatalysts of bromates. Sensors Actuators B Chem 173:346–353. doi:10.1016/j.snb.2012.07.020
Ding B, Wang H, Tao S, Wang Y, Qiu J (2016) Preparing electrochemical active hierarchically porous carbons for detecting nitrite in drinkable water. RSC Adv 6(9):7302–7309. doi:10.1039/c5ra22116a
Acknowledgements
This study was supported by the National Natural Science Foundation of China (grant 51508263) and the Natural Science Foundation of Jiangsu Province, China (grant BK20140607).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Rights and permissions
About this article
Cite this article
Liu, L., Cui, H., An, H. et al. Electrochemical detection of aqueous nitrite based on poly(aniline-co-o-aminophenol)-modified glassy carbon electrode. Ionics 23, 1517–1523 (2017). https://doi.org/10.1007/s11581-017-1972-6
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11581-017-1972-6