Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Reduced complexity and optimized face recognition approach based on facial symmetry

  • Original Research Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

A Correction to this article was published on 09 July 2022

This article has been updated

Abstract

Recognition of face images is still a challenging and open research problem. A number of recent algorithms have shown that there is a vast scope in improving recognition accuracy by utilizing facial symmetry for face recognition task. The lower computational complexity and faster processing times make this method well suited for real-time applications. In this paper, we have used only one half of the face image for recognition task against various facial challenges. Keeping in view all the previous related studies that are limited in their scope, an unbiased comparison is presented between full face images and half face images by applying four subspace-based algorithms with four different distance metrics. Experiments are conducted on the two most challenging face databases. The FERET is a benchmark database, which closely simulates real-life scenarios, and LFW which is developed for the problem of unconstrained face recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Change history

References

  1. K. Jain, A. Ross, S. Prabhakar.: An introduction to biometric recognition. In: IEEE, (2004)

  2. Chellappa, R., Sinha, P., Phillips, P.: Face recognition by computers and humans. Computer 43(2), 46–55 (2010)

    Article  Google Scholar 

  3. L. Hsiu-Hsia, C. Wen-Chung, Y. Chao- Tung, C. Chun-Tse, Z. Tianyi, L. Lun- Jou.: On construction of transfer learning for facial symmetry assessment before and after orthognathic surgery. In: Computer Methods and Programs in Biomedicine, Elsevier, (2021)

  4. NIST, “FERET Database,” 2001. [Online]. Available: http://face.nist.gov/colorferet/. [Accessed 07 Oct 2021].

  5. “LFW Database,” [Online]. Available: http://vis-www.cs.umass.edu/lfw/. [Accessed 7 Oct 2021].

  6. J. Harguess, S. Gupta, and J. K. Aggarwal.: 3D face recognition with the average-half-face. In: PatternRecognition, 2008. ICPR 2008. 19th International Conference, (2008)

  7. J. Harguess and J. Aggarwal.: A case for the average-half-face in 2D and 3D for face recognition. In: Computer vision and pattern recognition workshops, 2009. CVPR Workshops 2009. IEEE Computer Society Conference on (2009)

  8. J. Harguess, J. K. Aggarwal.: Is there a connection between face symmetry and face recognition?. In: Computer vision and pattern recognition workshops (CVPRW), 2011 IEEE Computer Society Conference (2011)

  9. A. K. Singh, G. C. Nandi.: Face recognition using facial symmetry. In: Proceedings of the Second International Conference on Computational Science, Engineering and Information Technology, (2012)

  10. Z. Min, Y. Mengbo, A. Takuya.: Application of facial symmetrical characteristic to transfer learning. In: IEEJ transactions on electrical and electronic engineering, p 108–116, (2021)

  11. W. Zhao, R. Chellappa, P. J. Phillips, A. Rosenfeld.: Face recognition: a literature survey. In: ACM Computing Surveys (CSUR), pp. 399--458, (2003)

  12. W. Zhao, R. Chellappa, P. Phillips, A. Rosenfeld.: Face recognition: a literature survey. In: ACM computing surveys, vol. 35, no. 4, pp. 399–458, (2003)

  13. I. Cox, J. Ghosn, P. Yianilos.: Feature-based face recognition using mixture distance.: Proceedings, IEEE Conference on Computer Vision and Pattern Recognition, (1996)

  14. Z. Lei, M. Pietikainen, S. Z. Li.: Learning discriminant face descriptor. In: IEEE Transactions on Pattern Analysis And Machine Intelligence (2014)

  15. L. Liu, S. Lao, P. W. Fieguth, Y. Guo, X. Wang, M. Pietikainen.: Median robust extended local binary pattern for texture classification. In: IEEE Transactions on Image Processing, (2016)

  16. D. Huang, C. Shan, M. Ardabilian, Y. Wang, L. Chen.: Local binary patterns and its application to facial image analysis: a survey. In: IEEE transactions on systems, man, and cybernetics (2011)

  17. C. Liu, H. Wechsler.: Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition. In: IEEE Transactions on Image processing, (2002)

  18. Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cognit. Neurosci. 3(1), 71–86 (1991)

    Article  Google Scholar 

  19. Penev, P., Atick, J.: Local feature analysis: a general statistical theory for object representation. Network 7(3), 477–500 (1996)

    Article  Google Scholar 

  20. J. Huang, B. Heisele, V. Blanz.: Component-based face recognition with 3D morphable models. In Audio-and Video-Based Biometric Person Authentication, Springer, (2003)

  21. A. Pentland, B. Moghaddam, T. Starner.: View-based and modular eigenspaces for face recognition. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, (1994)

  22. Lanitis, A., Taylor, C., Cootes, T.: Automatic face identification system using flexible appearance models. Image Vision Comput. 13(5), 393–401 (1995)

    Article  Google Scholar 

  23. Lawrence, S., Giles, C., Tsoi, A., Back, A.: Face recognition a convolutional neural network approach. IEEE Transact. Neural Networks 8(1), 98–113 (1997)

    Article  Google Scholar 

  24. Y. Wen, K. Zhang, Z. Li, Y. Qiao.: A discriminative feature learning approach for deep face recognition. In: European Conference on Computer Vision, 2016, pp. 499—515, (2016)

  25. G. Guo, S. Li and K. Chan.: Face recognition by support vector machines. In: Proceedings of the IEEE International Conference on Automatic Face and Gesture Recognition, (2000)

  26. Y.-D. Zhang, Z.-J. Yang, H.-M. Lu, X.-X. Zhou, P. Phillips, Q.-M. Liu, S.-H. Wang.: Facial emotion recognition based on biorthogonal wavelet entropy, fuzzy support vector machine, and stratified cross validation. In: IEEE Access, vol. 4 (2016)

  27. Moghaddam, B., Jebara, T., Pentland, A.: Bayesian face recognition. Pattern Recogn. 33(11), 1771–1782 (2000)

    Article  Google Scholar 

  28. Zhu, Y., Cutu. F.: Face detection using half-face templates. J. Vision. 3(9), 839–839 (2003)

  29. Kirby, M., Sirovich, L.: Application of the Karhunen-Lo´eve procedure for the characterization of human faces. IEEE Transact. Pattern Analysis Mach. Intell. 12(1), 103–108 (1990)

    Article  Google Scholar 

  30. H. Lu, K. Plataniotis, A. Venetsanopoulos.: Multilinear principal component analysis of tensor objects for recognition In: Pattern Recognition, 18th international conference, (2006)

  31. Belhumeur, P., Hespanha, J., Kriegman, D.: Eigenfaces vs fisherfaces: recognition using class specific linear projection. IEEE Transact. Pattern Analysis Mach. Intell. 19(7), 711–720 (1997)

    Article  Google Scholar 

  32. Comon, P.: Independent component analysis, a new concept? Signal Proces. 36(3), 287–314 (1994)

    Article  Google Scholar 

  33. Shah, M.I., Sorensen, D.C.: A symmetry preserving singular value decomposition. SIAM J. Matrix Analysis Appl. 28(3), 749–769 (2006)

  34. “The ORL Database of faces”, [Online]. Available: http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html. [Accessed 07 Oct 2021].

  35. Wang, J., Fu, S.: Integrate the original face image and its mirror image for face recognition. Neurocomputing 131, 191–199 (2014)

    Article  Google Scholar 

  36. J. Wang, S. Fu.: Using original face image and its virtual image for face recognition. Springer (2017)

  37. Xu, Y., Zhang, Z., Lu, G., Yang, J.: Approximately symmetrical face images for image preprocessing in face recognition and sparse representation based. Pattern Recogn. 54, 68–82 (2016)

    Article  Google Scholar 

  38. Ke, J., Peng, Y., Liu, S., Li, J., Pei, Z.: Face recognition based on symmetrical virtual image and original training image. J. Modern Optics. 65(4), 367–380 (2018)

  39. Phillips, P., Moon, H., Rizvi, S., Rauss, P.: The FERET evaluation methodology for face recognition algorithms. IEEE Transact. Pattern Analysis Mach. Intell. 22(10), 1090–1104 (2000)

    Article  Google Scholar 

  40. P. Viola, M. J. Jones.: Robust real-time face detection. Int. J. Comput. Vision (2004)

  41. Wang, S.-J., Yang, J., Sun, M.-F., Peng, X.-J., Sun, M.-M., Zhou, C.-G.: Sparse tensor discriminant color space for face verification. IEEE Transact. Neural Networks Learning Syst. 23, 876–888 (2012)

    Article  Google Scholar 

  42. U. I. Bajwa, “FaceRecEval”, [Online]. Available: http://code.google.com/p/facereceval/. [Accessed 07 Oct 2021].

  43. Bajwa, U.I., Taj, I.A., Anwar, M.W., Wang, X.: A multifaceted independent performance analysis of facial subspace recognition algorithms. PloS One 8, e56510 (2013)

    Article  Google Scholar 

  44. G. Loy, J.-O. Eklundh.: Detecting symmetry and symmetric constellations of features. In: European Conference on Vision (2006)

  45. Wang, A. Bovik, H. Sheikh, E. Simoncelli.: Image quality assessment: from error visibility to structural similarity. In: Image Processing, IEEE Transactions, (2004)

  46. Abdel-Salam Nasr, M., Al, M.F., Rahmawy, A.S.T.: Multi-scale structural similarity index for motion detection. J. King Saud Univ. Comput. Inform Sci. 29(3), 399–409 (2017)

    Google Scholar 

  47. Yadav D, Vatsa M, Singh R, Tistarelli M.: Bacteria foraging fusion for face recognition across age progression. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition Workshops (2013)

  48. Sungatullina D, Lu J, Wang G, Moulin P.: Multiview discriminating learning for age-invariant face recognition. Proceedings of the 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (2013)

  49. J Deng, J Guo, N Xue, S Zafeiriou.: ArcFace: additive angular margin loss for deep face recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, arXiv:1801.07698

Download references

Acknowledgements

This paper uses the FERET database of facial images collected under the FERET program, sponsored by the DOD counter drug technology development program office.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Waqas Ahmed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, W., Bajwa, U.I., Anwar, M.W. et al. Reduced complexity and optimized face recognition approach based on facial symmetry. J Real-Time Image Proc 19, 809–822 (2022). https://doi.org/10.1007/s11554-022-01224-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-022-01224-0

Keywords

Navigation