Abstract
In the area of remote sensing image processing, accurate segmentation of high-resolution remote sensing images in real time remains a challenging problem and numerous approaches have been developed for the problem. This paper proposes a new unsupervised approach that can efficiently analyze a remote sensing image and provide accurate segmentation results. The approach performs segmentation in three stages. In the first stage, an image is partitioned into blocks of equal sizes. The mean values of the R, G and B components of the pixels in each block are computed to form a feature vector of the block. A preliminary segmentation result is obtained by clustering the feature vectors with a simple clustering algorithm. In the second stage, a Bayesian approach is applied to refine the preliminary segmentation result. In the final stage, a graph-based method is utilized to recognize regions with complex texture structures. The performance of this approach has been tested on a few benchmark datasets, and its segmentation accuracy is compared with that of many state-of-the-art segmentation tools for remote sensing images. The testing results show that the overall segmentation accuracy of the proposed approach is higher than that of the other tools, and real-time analysis suggests that the approach is promising for real-time applications. An implementation of the approach in MATLAB is freely available upon request.
Similar content being viewed by others
Availability of data
The source code and testing data of this work are freely available upon request.
References
Blaschke, T.: Object based image analysis for remote sensing. ISPRS J. Photogramm. Remote Sens. 65(1), 2–16 (2010)
Martha, T.R., Kerle, N., van Westen, C.J., Jetten, V., Kumar, K.V.: Segment optimization and data-driven thresholding for knowledge based landslide detection by object-based image analysis. IEEE Trans. Geosci. Remote Sens. 49(12), 4928–4943 (2011)
Heumann, B.W.: An object-based classification of mangroves using a hybrid decision tree—support vector machine approach. Remote Sens. 3(12), 2440–2460 (2011)
Li, P., Guo, J., Song, B., Xiao, X.: A multilevel hierarchical image segmentation method for urban impervious surface mapping using very high resolution imagery. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 4(1), 103–116 (2011)
dos Santos, J.A., Gosselin, P.-H., Philipp-Foliguet, S., Torres, R.S., Falcão, A.X.: Multiscale classification of remote sensing images. IEEE Trans. Geosci. Remote Sens. 50(10), 3764–3775 (2012)
Kurtz, C., Passat, N., Gançarski, P., Puissant, A.: Extraction of complex patterns from multiresolution remote sensing images: a hierarchical top-down methodology. Pattern Recognit. 45(2), 685–706 (2012)
Yi, L., Zhang, G., Wu, Z.: A scale-synthesis method for high spatial resolution remote sensing image segmentation. IEEE Trans. Geosci. Remote Sens. 50(10), 4062–4070 (2012)
Yuan, J., Wang, D., Li, R.: Remote sensing image segmentation by combining spectral and texture features. IEEE Trans. Geosci. Remote Sens. 52(1), 16–24 (2014)
Shi, X., Li, Y., Zhao, Q.: Flexible hierarchical gaussian mixture model for high-resolution remote sensing image segmentation based on global spatial information. Remote Sens. 12, 1219 (2020)
Li, M., Xu, L., Gao, S., Xu, N., Yan, B.: Adaptive segmentation of remote sensing images. Sensors 19, 2385 (2019)
Dabboor, M., Collins, M., Karathanassi, V., Braun, A.: An unsupervised classification approach for polarimetric SAR data based on the Chernoff distance for the complex Wishart distribution. IEEE Trans. Geosci. Remote Sens. 51, 4200–4213 (2013)
Arii, M., van Zyl, J.J., Kim, Y.: Adaptive model-based decomposition of polarimetric SAR covariance matrices. IEEE Trans. Geosci. Remote Sens. 49, 1104–1113 (2011)
Song, W., Li, M., Zhang, P., Wu, Y., Tan, X.: An, L. Mixture WGG-MRF model for PolSAR image classification. IEEE Trans. Geosci. Remote Sens. 56, 905–920 (2018)
Zhu, X.X., Tuia, D., Mou, L., Xia, G.S., Zhang, L., Xu, F., Fraundorfer, F.: Deep learning in remote sensing: a comprehensive review and list of resources. IEEE Trans. Geosci. Remote Sens. 5, 8–36 (2017)
Volpi, M., Tuia, D.: Dense semantic labeling of subdecimeter resolution images with convolutional neural networks. IEEE Trans. Geosci. Remote Sens. 55, 881–893 (2017)
De, S., Bruzzone, L., Bhattacharya, A., Bovolo, F., Chaudhuri, S.: A novel technique based on deep learning and a synthetic target database for classification of urban areas in polSAR data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 11, 154–170 (2018)
Wang, Y., He, C., Liu, X., Liao, M.: A hierarchical fully convolutional network integrated with sparse and low-rank subspace representations for polSAR imagery classification. Remote Sens. 10, 342 (2018)
Li, Y., Chen, Y., Liu, G., Jiao, L.: A novel deep fully convolutional network for polSAR image classification. Remote Sens. 10, 1984 (2018)
Bi, H., Sun, J., Xu, Z.: A graph-based semisupervised deep learning model for polSAR image classification. IEEE Trans. Geosci. Remote Sens. 57, 2116–2132 (2019)
Cao, Y., Wu, Y., Zhang, P., Liang, W., Li, M.: Pixel-wise polSAR image classification via a novel complex-valued deep fully convolutional network. Remote Sens. 11, 2653 (2019)
Wang, S., Sun, J., Phillips, P., et al.: Polarimetric synthetic aperture radar image segmentation by convolutional neural network using graphical processing units. J. Real-Time Image Proc. 15, 631–642 (2018)
Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 24, 603–619 (2002)
Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. Int. J. Comput. Vis. 59, 167–181 (2004)
Mardia, K.V., Hainsworth, T.J.: A spatial thresholding method for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 10, 919–927 (1988)
Haris, K., Efstratiadis, S.N., Maglaveras, N.: Watershed-based image segmentation with fast region merging. In: Proceedings of the 1998 International Conference on Image Processing, Chicago
Myint, S., Gober, P., Brazel, A., Grossman-Clarke, S., Weng, Q.: Perpixel versus object-based classification of urban land cover extraction using high spatial resolution imagery. Remote Sens. Environ. 115, 1145–1161 (2011)
Heumann, B.W.: An object-based classification of mangroves using a hybrid decision tree—support vector machine approach. Remote Sens. 3, 2440–2460 (2011)
Baatz, M., Schape, A.: Multiresolution segmentation: an optimization approach for high quality multi-scale image segmentation. In: Strobl, J., Blaschke, T., Griesbner, G. (eds.) Angewandte Geographische Informations-Verarbeitung, vol. XII, pp. 12–23. Wichmann Verlag, Karlsruhe (2000)
Fu, G., Zhao, H., Li, C., Shi, L.: Segmentation for high-resolution optical remote sensing imagery using improved quadtree and region adjacency graph technique. Remote Sens. 5, 3259–3279 (2013)
Banerjee, B., Varma, S., Buddhiraju, K., Eeti, L.: Unsupervised multi-spectral satellite image segmentation combining modified mean-shift and a new minimum spanning tree based clustering technique. IEEE J. Sel. Top. Appl. Top. Earth Obs. Remote Sens. 7, 888–894 (2014)
Beaulieu, J.M., Goldberg, M.: Hierarchy in picture segmentation: a stepwise optimization approach. IEEE Trans. Pattern Anal. Mach. Intell. 11, 150–163 (1989)
Eppstein, D.: On nearest-neighbor graphs. Discrete Comput. Geom. 17, 263–282 (1997)
Trémeau, A., Colantoni, P.: Regions adjacency graph applied to color image segmentation. IEEE Trans. Image Process. 9, 735–744 (2000)
Ren, X., Malik, J.: Learning a classification model for segmentation. In: Proceedings of the IEEE International Conference on Computer Vision, Nice, Franc. pp. 10–17
Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22, 888–905 (2000)
Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: Slic superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34, 2274–2282 (2012)
Cheng, M.M., Mitra, N.J., Huang, X., Torr, P.H., Hu, S.: Global contrast based salient region detection. IEEE Trans. Pattern Anal. Mach. Intell. 37, 569–582 (2015)
Wang, M., Dong, Z., Cheng, Y., Li, D.: Optimal segmentation of high-resolution remote sensing image by combining superpixels with the minimum spanning tree. IEEE Trans. Geosci. Remote Sens. 56, 228–238 (2018)
Csillik, O.: Fast segmentation and classification of very high resolution remote sensing data using SLIC superpixels. Remote Sens. 9, 243 (2017)
Gu, H., Han, Y., Yang, Y., Li, H., Liu, Z., Soergel, U., Blaschke, T., Cui, S.: An efficient parallel multi-scale segmentation method for remote sensing imagery. Remote Sens. 10, 590 (2018)
Hu, Z., Li, Q., Zou, Q., Wu, G.: A bilevel scale-sets model for hierarchical representation of large remote sensing images. IEEE Trans. Geosci. Remote Sens. 54, 7366–7377 (2016)
Sun, G., Hao, Y., Chen, X., Ren, J., Zhang, A., Huang, B., Zhang, Y., Jia, X.: Dynamic post-earthquake image segmentation with an adaptive spectral-spatial descriptor. Remote Sens. 9, 899 (2017)
Yan, Y., Ren, J., Sun, G., Zhao, H., Han, J., Li, X., Zhan, J.: Unsupervised image saliency detection with gestalt-laws guided optimization and visual attention based refinement. Pattern Recognit. 79, 65–78 (2018)
Hu, Z., Wu, Z., Zhang, Q., Fan, Q., Xu, J.: A spatially-constrained color–texture model for hierarchical VHR image segmentation. IEEE Trans. Geosci. Remote Sens. Lett. 10, 120–124 (2013)
Zhong, Y., Gao, R., Zhang, L.: Multiscale and multifeature normalized cut segmentation for high spatial resolution remote sensing imagery. IEEE Trans. Geosci. Remote Sens. 54, 6061–6075 (2016)
Fu, Z., Sun, Y., Fan, L., Han, Y.: Multiscale and multifeature segmentation of high-spatial resolution remote sensing images using superpixels with mutual optimal strategy. Remote Sens. 10, 1289 (2018)
Mikes, S., Haindl, M.: Benchmarking of remote sensing segmentation methods. IEEE J. Sel. Top. Appl. Top. Earth Obs. Remote Sens. 8(5), 2240–2248 (2015)
Rottensteiner, F., Sohn, G., Jung, J., Gerke, M., Baillard, C., Benitez, S., Breitkopf, U.: The ISPRS benchmark on urban object classification and 3D building reconstruction. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 1, 293–298 (2012)
Haindl, M., Mikeš, S., Pudil, P.: Unsupervised hierarchical weighted multi-segmenter. In: Benediktsson, J., Kittler, J., Roli, F. (eds.) Lecture Notes in Computer Science, vol. 5519, pp. 272–282. Springer, New York (2009)
Scarpa, G., Masi, G., Gaetano, R., Verdoliva, L., Poggi, G.: Dynamic hierarchical segmentation of remote sensing images. In: Petrosino, A. (ed.) Image Analysis and Processing, vol. 8156, pp. 371–380. Springer, New York (2013)
ENVI/M. https://www.harrisgeospatial.com/Software-Technology/ENVI
Haindl, M., Mikeš, S., Vácha, P.: Illumination invariant unsupervised segmenter. In: Proceedings of the IEEE 16th International Conference on Image Processing (ICIP’09), pp. 4025–4028 (2009)
R. Gaetano, G. Scarpa, and G. Poggi, “Recursive texture fragmentation and reconstruction segmentation algorithm applied to VHR images,” in Proc. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS’09), vol. 4, 2009, pp. IV–101–IV–104
G. Scarpa and M. Haindl, “Unsupervised texture segmentation by spectral-spatial-independent clustering,” in Proc. Int. Conf. Pattern Recogn., 2006, pp. 151–154
D’Elia, C., Poggi, G., Scarpa, G.: A tree-structured Markov random field model for Bayesian image segmentation. IEEE Trans. Image Process. 12(10), 1259–1273 (2003)
Benz, U.C., Hofmann, P., Willhauck, G., Lingenfelder, I., Heynen, M.: Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS J. Photogramm. Remote Sens. 58, 239–258 (2004)
Reich, B.J., Ghosh, S.K.: Bayesian Statistical Methods, 1st edn. Chapman and Hall, London (2019)
Barber, D.: Bayesian Reasoning and Machine Learning, 1st edn. Cambridge University Press, London (2012)
Theodoridis, S.: Machine Learning, A Bayesian and Optimization Perspective. Elsevier, Amsterdam (2020)
Fieguth, P.: Statistical Image Processing and Multidimensional Modeling. Springer, New York (2012)
Liu, Y., Bian, L., Meng, Y., Wang, H., Zhang, S., Yang, Y.: Discrepancy measures for selecting optimal combination of parameter values in object-based image analysis. ISPRS J. Photogramm. Remote Sens. 68, 144–156 (2012)
Polak, M., Zhang, H., Pi, M.: An evaluation metric for image segmentation of multiple objects. Image Vis. Comput. 27, 1223–1227 (2009)
Cheng, G., Cheng, J., Luo, M., et al.: Effective and efficient multitask learning for brain tumor segmentation. J. Real-Time Image Proc. (2020). https://doi.org/10.1007/s11554-020-00961-4
Acknowledgements
The authors are grateful for the constructive comments and suggestions from the anonymous reviewers on an earlier version of the paper.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Song, Y., Qu, J. Real-time segmentation of remote sensing images with a combination of clustering and Bayesian approaches. J Real-Time Image Proc 18, 1541–1554 (2021). https://doi.org/10.1007/s11554-020-00990-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11554-020-00990-z