Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Deep learning for real-time image steganalysis: a survey

  • Special Issue Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

Steganography is a technique that transmits secret data or message in an appropriate multimedia carrier, e.g., image, audio, and video files. It comes under the assumption that if the feature is visible, the point of attack is evident. However, such technology is always used by criminals who do not want to be easily discovered to hide harmful information in various media, especially in images. Massive spreading of those harmful information will increase the difficulty of social security management. In this case, excellent image steganalysis should be developed and applied. Specially, real-time image steganalysis is necessary when information timelines need to be protected. If detection scene has large amounts of users, deep learning can be applied to improve performance of image steganalysis benefiting from its powerful processing capability. Using deep learning, real-time image steganalysis system gets higher accuracy and efficiency. In this paper, we give an account of preliminary knowledge first. A brief overview of the deep neural networks (DNN) is also presented. The combination of DNN and real-time image steganalysis is introduced. Then, we import the concept of CNN in DNN, and expound theory as well as advantages of combining CNN and image steganalysis. For multi-user scenarios, we analyze a practical real-time image steganalysis application based on outlier detection methods. At last, we prospect the future issues of real-time image steganalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Tang, Y.-H., Jiang, L.-H., He, H.-Q., Dong, W.-Y.: A review on deep learning based image steganalysis. In: 2018 IEEE 3rd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), pp. 1764–1770. IEEE, (2018)

  2. Li, B., He, J., Huang, J., Shi, Y.Q.: A survey on image steganography and steganalysis. J. Inf. Hiding Multimed. Signal Process. 2(2), 142–172 (2011)

    Google Scholar 

  3. Songtao, W., Zhong, S., Liu, Y.: Deep residual learning for image steganalysis. Multimed. Tools Appl. 77(9), 10437–10453 (2018)

    Google Scholar 

  4. Nutzinger, M., Poisel, R.: Software architecture for real-time steganography in auditive media. In: 2010 IEEE Region 8 International Conference on Computational Technologies in Electrical and Electronics Engineering (SIBIRCON), pp. 100–105. IEEE, (2010)

  5. Al-Othmani, A.Z., Manaf, A.A., Zeki, A.M.: A survey on steganography techniques in real time audio signals and evaluation. Int. J. Comput. Sci. Issues (IJCSI) 9(1), 30 (2012)

    Google Scholar 

  6. Pibre, L., Pasquet, J., Ienco, D., Chaumont, M.: Deep learning is a good steganalysis tool when embedding key is reused for different images, even if there is a cover sourcemismatch. Electron. Imaging 2016(8), 1–11 (2016)

    Google Scholar 

  7. Qian, Y., Dong, J., Wang, W., Tan, T.: Learning and transferring representations for image steganalysis using convolutional neural network. In: 2016 IEEE International Conference on Image Processing (ICIP), pp. 2752–2756. IEEE, (2016)

  8. Qi, L., Chen, Y., Yuan, Y., Fu, S., Zhang, X., Xu, X.: A QoS-aware virtual machine scheduling method for energy conservation in cloud-based cyber-physical systems. World Wide Web (2019). https://doi.org/10.1007/s11280-019-00684-y

  9. Qi, L., Wang, R., Chunhua, H., Li, S., He, Q., Xiaolong, X.: Time-aware distributed service recommendation with privacy-preservation. Inf. Sci. 480, 354–364 (2019)

    Google Scholar 

  10. Ye, J., Ni, J., Yi, Y.: Deep learning hierarchical representations for image steganalysis. IEEE Trans. Inf. Forensics Secur. 12(11), 2545–2557 (2017)

    Google Scholar 

  11. Chanu, Y.J., Tuithung, T., Singh, K.M.: A short survey on image steganography and steganalysis techniques. In: 2012 3rd National Conference on Emerging Trends and Applications in Computer Science, pp. 52–55. IEEE, (2012)

  12. Al-Afandy, K.A., Faragallah, O.S., ELmhalawy, A., El-Rabaie, El-Sayed, M., El-Banby, G.M.: High security data hiding using image cropping and LSB least significant bit steganography. In: 2016 4th IEEE International Colloquium on Information Science and Technology (CiSt), pp. 400–404. IEEE, (2016)

  13. Jois, A., Tejaswini, L.: Survey on LSB data hiding techniques. In: 2016 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), pp. 656–660. IEEE, (2016)

  14. Jun, K.X., Jun, D.L., Yun, W.: Research on an information hiding algorithm base on most significant bit in image. In: 2010 International Conference on Computer Application and System Modeling (ICCASM 2010), vol. 3, pp. V3–372. IEEE, (2010)

  15. Bing, F., Xiansan, Z.: Information hiding technique in most significant bit of still image. In: 2009 International Conference on image analysis and signal processing, pp. 74–76. IEEE, (2009)

  16. Nguyen, T.D., Arch-Int, S., Arch-Int, N.: An adaptive multi bit-plane image steganography using block data-hiding. Multimed. Tools Appl. 75(14), 8319–8345 (2016)

    Google Scholar 

  17. Zhou, Z., Sun, H., Harit, R., Chen, X., Sun, X.: Coverless image steganography without embedding. In: International Conference on Cloud Computing and Security, pp. 123–132. Springer (2015)

  18. Li, L., Luo, B., Li, Q., Fang, X.: A color images steganography method by multiple embedding strategy based on sobel operator. In: 2009 International Conference on multimedia information networking and security, vol. 2, pp. 118–121. IEEE (2009)

  19. Singh, A., Singh, H.: An improved LSB based image steganography technique for RGB images. In: 2015 IEEE International Conference on electrical, computer and communication technologies (ICECCT), pp. 1–4. IEEE, (2015)

  20. Potdar, V.M., Han, S., Chang, E.: Fingerprinted secret sharing steganography for robustness against image cropping attacks. In: INDIN’05. 2005 3rd IEEE International Conference on industrial informatics, 2005., pp. 717–724. IEEE, (2005)

  21. Shirali-Shahreza, M.H., Shirali-Shahreza, M.: A new approach to Persian/Arabic text steganography. In: 5th IEEE/ACIS International Conference on Computer and Information Science and 1st IEEE/ACIS International Workshop on component-based software engineering, software architecture and reuse (ICIS-COMSAR’06), pp. 310–315. IEEE, (2006)

  22. Jung, K.-H., Yoo, K.-Y.: Data hiding method using image interpolation. Comput. Stand. Interfaces 31(2), 465–470 (2009)

    Google Scholar 

  23. Li, Z., Chen, X., Pan, X., Zeng, X.: Lossless data hiding scheme based on adjacent pixel difference. In: 2009 International Conference on computer engineering and technology, vol. 1, pp. 588–592. IEEE, (2009)

  24. McKeon, R.T.: Strange Fourier steganography in movies. In: 2007 IEEE International Conference on Electro/Information Technology, pp. 178–182. IEEE, (2007)

  25. Westfeld, A.: F5—a steganographic algorithm. In: International Workshop on Information Hiding, pp. 289–302. Springer, Berlin (2001)

    Google Scholar 

  26. Chhikara, R.R., Sharma, P., Singh, L.: An improved dynamic discrete firefly algorithm for blind image steganalysis. Int. J. Mach. Learn. Cybern. 9(5), 821–835 (2018)

    Google Scholar 

  27. Li, B., Wang, M., Li, X., Tan, S., Huang, J.: A strategy of clustering modification directions in spatial image steganography. IEEE Trans. Inf. Forensics Secur. 10(9), 1905–1917 (2015)

    Google Scholar 

  28. Liao, X., Yin, J., Guo, S., Li, X., Sangaiah, A.K.: Medical jpeg image steganography based on preserving inter-block dependencies. Comput. Electr. Eng. 67, 320–329 (2018)

    Google Scholar 

  29. Westfeld, A., Pfitzmann, A.: Attacks on steganographic systems. In: International workshop on information hiding, pp. 61–76. Springer, Berlin (1999)

    Google Scholar 

  30. Farid, H.: Detecting hidden messages using higher-order statistical models. In: Proceedings International Conference on Image Processing, vol. 2, pp. II–II. IEEE, (2002)

  31. Lyu, S., Farid, H.: Detecting hidden messages using higher-order statistics and support vector machines. In: International Workshop on information hiding, pp. 340–354. Springer, (2002)

  32. Fridrich, J., Long, M.: Steganalysis of LSB encoding in color images. In: 2000 IEEE International Conference on Multimedia and Expo. ICME2000. Proceedings. Latest Advances in the Fast Changing World of Multimedia (Cat. No. 00TH8532), vol. 3, pp. 1279–1282. IEEE, (2000)

  33. Fridrich, J., Goljan, M., Du, R.: Reliable detection of LSB steganography in color and grayscale images. In: Proceedings of the 2001 workshop on Multimedia and security: new challenges, pp. 27–30. ACM, (2001)

  34. Mohammadi, F.G., Sajedi, H.: Region based image steganalysis using artificial bee colony. J. Vis. Commun. Image Represent. 44, 214–226 (2017)

    Google Scholar 

  35. Christaline, J.A., Ramesh, R., Vaishali, D.: Bio-inspired computational algorithms for improved image steganalysis. Indian J. Sci. Technol. 9(10), 1–10 (2016)

    Google Scholar 

  36. Abdulrahman, H., Chaumont, M., Montesinos, P., Magnier, B.: Color image steganalysis based on steerable gaussian filters bank. In: Proceedings of the 4th ACM Workshop on Information Hiding and Multimedia Security, pp. 109–114. ACM, (2016)

  37. Zhong, P., Li, M., Kai, M., Wen, J., Xue, Y.: Image steganalysis in high-dimensional feature spaces with proximal support vector machine. Int. J. Digit. Crime Forensics (IJDCF) 11(1), 78–89 (2019)

    Google Scholar 

  38. Ni, D., Feng, G., Shen, L., Zhang, X.: Selective ensemble classification of image steganalysis via deep q network. IEEE Signal Processing Letters (2019)

  39. Xia, C., Guan, Q., Zhao, X., Zhao, C.: Highly accurate real-time image steganalysis based on GPU. J. Real-Time Image Proc. 14(1), 223–236 (2018)

    Google Scholar 

  40. Ehrlich, M., Davis, L.: Deep residual learning in the JPEG transform domain. arXiv preprint. arXiv:1812.11690 (2018)

  41. Xianglei, H., Ni, J., Shi, Y.-Q.: Efficient jpeg steganography using domain transformation of embedding entropy. IEEE Signal Process. Lett. 25(6), 773–777 (2018)

    Google Scholar 

  42. Fridrich, J., Kodovsky, J.: Rich models for steganalysis of digital images. IEEE Trans. Inf. Forensics Secur. 7(3), 868–882 (2012)

    Google Scholar 

  43. Duan, X., Jia, K., Li, B., Guo, D., Zhang, E., Qin, C.: Reversible image steganography scheme based on a u-net structure. IEEE Access 7, 9314–9323 (2019)

    Google Scholar 

  44. Sheikhan, M.: Hybrid of evolutionary and swarm intelligence algorithms for prosody modeling in natural speech synthesis. Int. J. Inf. Commun. Technol. Res. 8(2), 33–44 (2016)

    Google Scholar 

  45. Sheikhan, M.: Synthesizing suprasegmental speech information using hybrid of GA-ACO and dynamic neural network. In: The 5th Conference on Information and Knowledge Technology, pp. 175–180. IEEE, (2013)

  46. Ren, Y., Liu, D., Xiong, Q., Fu, J., Wang, L.: Spec-resnet: a general audio steganalysis scheme based on deep residual network of spectrogram. arXiv preprint. arXiv:1901.06838 (2019)

  47. Sun, Y., Zhang, H., Zhang, T., Wang, R.: Deep neural networks for efficient steganographic payload location. J. Real Time Image Process. 16, 635 (2019)

    Google Scholar 

  48. Aditya, K., Grzonkowski, S., Lekhac, N.: Enabling trust in deep learning models: a digital forensics case study. In: 2018 17th IEEE International Conference On Trust, Security and Privacy In Computing and Communications/12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE), pp. 1250–1255. IEEE (2018)

  49. Li, S., Ye, D., Jiang, S., Liu, C., Niu, X., Luo, X.: Attack on deep steganalysis neural networks. In: International Conference on Cloud Computing and Security, pp. 265–276. Springer, Berlin (2018)

    Google Scholar 

  50. Liu, J., Zhang, W., Zhang, Y., Hou, D., Liu, Y., Zha, H., Yu, N.: Detection based defense against adversarial examples from the steganalysis point of view. In: Proceedings of the IEEE Conference on computer vision and pattern recognition, pp. 4825–4834 (2019)

  51. Dong, C., Loy, C.C., Tang, X.: Accelerating the super-resolution convolutional neural network. In: European Conference on computer vision, pp. 391–407. Springer, Berlin (2016)

    Google Scholar 

  52. Rastegari, M., Ordonez, V., Redmon, J., Farhadi, A.: Xnor-net: imagenet classification using binary convolutional neural networks. In: European Conference on computer vision, pp. 525–542. Springer, Berlin (2016)

    Google Scholar 

  53. Qi, L., Zhang, X., Dou, W., Ni, Q.: A distributed locality-sensitive hashing-based approach for cloud service recommendation from multi-source data. IEEE J. Sel. Areas Commun. 35(11), 2616–2624 (2017)

    Google Scholar 

  54. Qian, Y., Dong, J., Wang, W., Tan, T.: Deep learning for steganalysis via convolutional neural networks. In: Media watermarking, security, and forensics 2015, vol. 9409, pp. 94090J. International Society for Optics and Photonics (2015)

  55. Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using convolutional neural networks. In: Proceedings of the IEEE Conference on computer vision and pattern recognition, pp. 2414–2423 (2016)

  56. Wu, Y., Li, H., Yi, J.: Steganalysis using unsupervised end-to-end CNN fused with residual image. In: 2018 11th International Congress on image and signal processing, biomedical engineering and informatics (CISP-BMEI), pp. 1–5. IEEE, (2018)

  57. Wu, S., Zhong, S., Liu, Y.: A novel convolutional neural network for image steganalysis with shared normalization. arXiv preprint: arXiv:1711.07306 (2017)

  58. Yu, X., Tan, H., Liang, H., Li, C.-T., Liao, G.: A multi-task learning CNN for image steganalysis. In: 2018 IEEE International Workshop on information forensics and security (WIFS), pp. 1–7. IEEE (2018)

  59. Li, B., Wei, W., Ferreira, A., Tan, S.: Rest-net: diverse activation modules and parallel subnets-based cnn for spatial image steganalysis. IEEE Signal Process. Lett. 25(5), 650–654 (2018)

    Google Scholar 

  60. Qian, Y., Dong, J., Wang, W., Tan, T.: Feature learning for steganalysis using convolutional neural networks. Multimed. Tools Appl. 77(15), 19633–19657 (2018)

    Google Scholar 

  61. Ke, Q., Ming, L.D., Daxing, Z.: Image steganalysis via multi-column convolutional neural network. In: 2018 14th IEEE International Conference on signal processing (ICSP), pp. 550–553. IEEE (2018)

  62. Zhang, B., Su, J., Xiong, D., Lu, Y., Duan, H., Yao, J.: Shallow convolutional neural network for implicit discourse relation recognition. In: Proceedings of the 2015 Conference on empirical methods in natural language processing, pp. 2230–2235 (2015)

  63. Guanshuo, X., Han-Zhou, W., Shi, Y.-Q.: Structural design of convolutional neural networks for steganalysis. IEEE Signal Process. Lett. 23(5), 708–712 (2016)

    Google Scholar 

  64. Das, N.S., Rasmi, P.S.: Large-scale steganalysis using outlier detection method for image sharing application. In: 2015 International Conference on circuits, power and computing technologies [ICCPCT-2015], pp. 1–4. IEEE (2015)

  65. Ker, A.D., Pevnỳ, T.: The steganographer is the outlier: realistic large-scale steganalysis. IEEE Trans. Inf. Forensics Secur. 9(9), 1424–1435 (2014)

    Google Scholar 

  66. Xu, X., Fu, S., Cai, Q., Tian, W., Liu, W., Dou, W., Sun, X., Liu, A.X.: Dynamic resource allocation for load balancing in fog environment. Wireless Communications and Mobile Computing, 2018 (2018)

  67. Zhou, Z., Wu, J.Q.M., Sun, X.: Multiple distance-based coding: toward scalable feature matching for large-scale web image search. IEEE Transactions on Big Data (2019)

  68. Xu, X., Chen, Y., Yuan, Y., Huang, T., Zhang, X., Qi, L.: Blockchain-based cloudlet management for multimedia workflow in mobile cloud computing. Multimed. Tools Appl. (2019). https://doi.org/10.1007/s11042-019-07900-x

    Article  Google Scholar 

  69. Xiaolong, X., Dou, W., Zhang, X., Chen, J.: Enreal: an energy-aware resource allocation method for scientific workflow executions in cloud environment. IEEE Trans. Cloud Comput. 4(2), 166–179 (2015)

    Google Scholar 

  70. Xu, X., Zhang, X., Gao, H., Xue, Y., Qi, L., Dou, W.: Become: blockchain-enabled computation offloading for IOT in mobile edge computing. IEEE Trans. Ind. Inf. 1–1 (2019)

  71. Zhou, Z., Wang, Y., Wu, Q.M.J., Yang, C.-N., Sun, X.: Effective and efficient global context verification for image copy detection. IEEE Trans. Inf. Forensics Secur. 12(1), 48–63 (2016)

    Google Scholar 

  72. Mo, Q., Dai, F., Liu, D., Qin, J., Xie, Z., Li, T.: Development of private processes: a refinement approach. IEEE Access 7, 31517–31534 (2018)

    Google Scholar 

  73. Xiaolong, X., Li, Y., Huang, T., Xue, Y., Peng, K., Qi, L., Dou, W.: An energy-aware computation offloading method for smart edge computing in wireless metropolitan area networks. J. Netw. Comput. Appl. 133, 75–85 (2019)

    Google Scholar 

  74. Xu, X., Zhang, X., Khan, M., Dou, W., Xue, S., Yu, S.: A balanced virtual machine scheduling method for energy-performance trade-offs in cyber-physical cloud systems. Future Gen. Comput. Syst. (2017)

  75. Mach, P., Becvar, Z.: Mobile edge computing: a survey on architecture and computation offloading. IEEE Commun. Surv. Tutor. 19(3), 1628–1656 (2017)

    Google Scholar 

  76. Shi, W., Dustdar, S.: The promise of edge computing. Computer 49(5), 78–81 (2016)

    Google Scholar 

  77. Xu, X., Liu, Q., Zhang, X., Zhang, J., Qi, L., Dou, W.: A blockchain-powered crowdsourcing method with privacy preservation in mobile environment. IEEE Trans. Comput. Soc. Syst. (2019)

  78. Xiaolong, X., Xue, Y., Qi, L., Yuan, Y., Zhang, X., Umer, T., Wan, S.: An edge computing-enabled computation offloading method with privacy preservation for internet of connected vehicles. Future Gen. Comput. Syst. 96, 89–100 (2019)

    Google Scholar 

  79. Xiaolong, X., Liu, Q., Luo, Y., Peng, K., Zhang, X., Meng, S., Qi, L.: A computation offloading method over big data for IOT-enabled cloud-edge computing. Future Gen. Comput. Syst. 95, 522–533 (2019)

    Google Scholar 

  80. Xiaolong, X., Shucun, F., Qi, L., Zhang, X., Liu, Q., He, Q., Li, S.: An IOT-oriented data placement method with privacy preservation in cloud environment. J. Netw. Comput. Appl. 124, 148–157 (2018)

    Google Scholar 

  81. Yi, S., Li, C., Li, Q.: A survey of fog computing: concepts, applications and issues. In: Proceedings of the 2015 workshop on mobile big data, pp. 37–42. ACM (2015)

  82. Zhou, Z., Wu, Q.M.J., Sun, X.: Encoding multiple contextual clues for partial-duplicate image retrieval. Pattern Recogn. Lett. 109, 18–26 (2018)

    Google Scholar 

  83. Xu, X., Fu, S., Yuan, Y., Luo, Y., Qi, L., Lin, W., Dou, W.: Multiobjective computation offloading for workflow management in cloudlet-based mobile cloud using NSGA-II. Comput. Intell. 35, 476 (2019)

    MathSciNet  Google Scholar 

  84. Xu, X., Huang, R., Dou, R., Li, Y., Zhang, J., Huang, T., Yu, W.: Energy-efficient cloudlet management for privacy preservation in wireless metropolitan area networks. Security and Communication Networks, 2018 (2018)

  85. Yi, S., Hao, Z., Qin, Z., Li, Q.: Fog computing: platform and applications. In: 2015 Third IEEE Workshop on Hot Topics in Web Systems and Technologies (HotWeb), pp. 73–78. IEEE (2015)

  86. Xu, X., Liu, X., Qi, L., Chen, Y., Ding, Z., Shi, J.: Energy-efficient virtual machine scheduling across cloudlets in wireless metropolitan area networks. Mobile Netw. Appl. 1–15 (2019)

  87. Xu, X., Zhao, X., Ruan, F., Zhang, J., Tian, W., Dou, W., Liu, A.X.: Data placement for privacy-aware applications over big data in hybrid clouds. Secur. Commun. Netw. 2017, (2017)

  88. Zhou, Z., Mu, Y., Wu, Q.M.J.: Coverless image steganography using partial-duplicate image retrieval. Soft. Comput. 23(13), 4927–4938 (2019)

    Google Scholar 

  89. Xu, X., Li, D., Dai, Z., Li, S., Chen, X.: A heuristic offloading method for deep learning edge services in 5g networks. IEEE Access (2019)

Download references

Acknowledgements

This research is supported by the National Natural Science Foundation of China under Grant no. 61872219.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lianyong Qi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruan, F., Zhang, X., Zhu, D. et al. Deep learning for real-time image steganalysis: a survey. J Real-Time Image Proc 17, 149–160 (2020). https://doi.org/10.1007/s11554-019-00915-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-019-00915-5

Keywords

Navigation