Abstract
In this paper, we deal with the problem of circle tracking across an image sequence. We propose an active contour model based on a new energy. The center and radius of the circle is optimized in each frame by looking for local minima of such energy. The energy estimation does not require edge extraction, it uses the image convolution with a Gaussian kernel and its gradient which is computed using a GPU–CUDA implementation. We propose a Newton–Raphson type algorithm to estimate a local minimum of the energy. The combination of an active contour model which does not require edge detection and a GPU–CUDA implementation provides a fast and accurate method for circle tracking. We present some experimental results on synthetic data, on real images, and on medical images in the context of aorta vessel segmentation in computed tomography (CT) images.
Similar content being viewed by others
References
ACR Foundation: Acr appropriateness criteria (2014). https://acsearch.acr.org/list
Alemán-Flores, M., Alvarez, L., Caselles, V.: Texture-oriented anisotropic filtering and geodesic active contours in breast tumor ultrasound segmentation. J. Math. Imaging Vis. 28(1), 81–97 (2007)
Alvarez, L., Baumela, L., Henriquez, P., Marquez-Neila, P.: Morphological snakes. In: Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on, pp. 2197–2202 (2010)
Aubert, G., Kornprobst, P.: Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations, 2nd edn. Springer Publishing Company Incorporated, New York (2010)
Bascle, B., Deriche, R.: Features extraction using parametric snakes. In: Pattern Recognition, 1992. Vol. III. Conference C: Image, Speech and Signal Analysis, Proceedings., 11th IAPR International Conference on, pp. 659–662. IEEE (1992)
Brox, T., Kim, Y.J., Weickert, J., Feiden, W.: Fully-automated analysis of muscle fiber images with combined region and edge-based active contours. In: Handels, H., Ehrhardt, J., Horsch, A., Meinzer, H.P., Tolxdorff, T. (eds.) Bildverarbeitung fr die Medizin 2006, Informatik aktuell, pp. 86–90. Springer, Berlin (2006)
Brox, T., Rousson, M., Deriche, R., Weickert, J.: Colour, texture, and motion in level set based segmentation and tracking. Image Vis. Comput. 28(3), 376–390 (2010)
Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22(1), 61–79 (1997)
Catté, F., Lions, P.L., Morel, J.M., Coll, T.: Image selective smoothing and edge detection by nonlinear diffusion. SIAM J. Numer. Anal. 29(1), 182–193 (1992)
Chan, T.F., Vese, L.A.: Active contours without edges. Trans. Imaging Proc. 10(2), 266–277 (2001). doi:10.1109/83.902291
Cheng, J., Grossman, M., McKercher, T.: Professional CUDA C Programming. Wiley, Indianapolis (2014)
Davies, E.R.: The effect of noise on edge orientation computations. Pattern Recogn. Lett. 6(5), 315–322 (1987)
De Fontes, F.P.X., Barroso, G.A., Coupé, P.: Real time ultrasound image denoising. J. Real-Time Image Process. 6(1), 15–22 (2011)
Debreuve, E., Barlaud, M., Marmorat, J.P., Aubert, G.: Active Contour Segmentation with a Parametric Shape Prior: Link with the Shape Gradient. In: ICIP, IEEE, pp. 1653–1656 (2006)
Gadeski, E., Fard, H.O., Le Borgne, H.: Gpu deformable part model for object recognition. J. Real-Time Image Process., 1–13 (2014)
Havel, J., Dubská, M., Herout, A., Josth, R.: Real-time detection of lines using parallel coordinates and cuda. J. Real-Time Image Process. 9(1), 205–216 (2014)
Herout, A., Josth, R., Juránek, R., Havel, J., Hradis, M., Zemcík, P.: Real-time object detection on cuda. J. Real-Time Image Process. 6(3), 159–170 (2011)
Hough, P.: Method and means for recognizing complex patterns (1962). URL: http://www.google.co.in/patents/US3069654. Us patent 3,069,654
Illingworth, J., Kittler, J.: A survey of the hough transform. Comput. Vis. Graph. Image Process. 44(1), 87–116 (1988)
Ioannou, D., Huda, W., Laine, A.F.: Circle recognition through a 2d hough transform and radius histogramming. Image Vis. Comput. 17(1), 15–26 (1999)
Jacob, M., Blu, T., Unser, M.: Efficient energies and algorithms for parametric snakes. IEEE Trans. Image Process. 13, 1231–1244 (2004)
Jan Essbach, B.L., Nacke, C.: Hough transform: Serial and parallel implementations. Tech. rep. URL: http://www.essbach.org/wp-content/uploads/2013/05/Hough
Kimme, C., Ballard, D., Sklansky, J.: Finding circles by an array of accumulators. Commun. ACM 18(2), 120–122 (1975)
Kirk, D.B.: Programming Massively Parallel Processors: A Hands-on Approach, 1st edn. Morgan Kaufmann Publishers Inc., San Francisco (2010)
Kumar, P., Singhal, A., Mehta, S., Mittal, A.: Real-time moving object detection algorithm on high-resolution videos using gpus. J. Real-Time Image Process., 1–17 (2013)
Laborda, M.A.M., Moreno, E.F.T., del Rincón, J.M., Jaraba, J.E.H.: Real-time gpu color-based segmentation of football players. J. Real-Time Image Process. 7(4), 267–279 (2012)
Lamas-Rodríguez, J., Heras, D.B., Arguello, F., Kainmueller, D., Zachow, S., Bóo, M.: Gpu-accelerated level-set segmentation. J. Real-Time Image Process., 1–15 (2013)
Levenverg, K.: A method for the solution of certain non-linear problems in least-squares. Q. Appl. Math. 2(2), 164–168 (1944)
Marquez-Neila, P., Baumela, L., Alvarez, L.: A morphological approach to curvature-based evolution of curves and surfaces. IEEE Trans. Pattern Anal. Mach. Intell. 36(1), 2–17 (2014)
NVIDIA, C.: Cuda c best practices guide. Technical report. URL: http://docs.nvidia.com/cuda/cuda-c-best-practices-guide
Pao, D.C.W., Li, H.F., Jayakumar, R.: Shapes recognition using the straight line hough transform: theory and generalization. IEEE Trans. Pattern Anal. Mach. Intell. 14(11), 1076–1089 (1992)
Paragios, N., Deriche, R.: Geodesic active regions and level set methods for motion estimation and tracking. Comput. Vis. Image Underst. 97(3), 259–282 (2005)
Podlozhnyuk, V.: Image convolution with cuda. NVIDIA Corporation, Technical report (2007)
Ptrucean, V., Gurdjos, P., von Gioi, R.: A parameterless line segment and elliptical arc detector with enhanced ellipse fitting. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) Computer Vision ECCV 2012. Lecture Notes in Computer Science. Springer, Berlin Heidelberg, pp. 572–585 (2012)
Trujillo-Pino, A., Krissian, K., Aleman-Flores, M., Santana-Cedres, D.: Accurate subpixel edge location based on partial area effect. Image Vision Comput. 31(1), 72–90 (2013)
Tsuji, S., Matsumoto, F.: Detection of ellipses by a modified hough transformation. IEEE Trans. Comput. 27(8), 777–781 (1978)
Ujaldon, M., Ruiz, A., Guil, N.: On the computation of the circle hough transform by a GPU rasterizer. Pattern Recogn. Lett. 29(3), 309–318 (2008)
Wang, Y.K., Huang, W.B.: A cuda-enabled parallel algorithm for accelerating retinex. J. Real-Time Image Process. 9(3), 407–425 (2014)
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Supplementary material 1 (MPG 6612 kb)
Supplementary material 1 ((MPG 6612 kb)
Supplementary material 1 ((MPG 7516 kb)
Supplementary material 1 ((MPG 9196 kb)
Rights and permissions
About this article
Cite this article
Cuenca, C., González, E., Trujillo, A. et al. Fast and accurate circle tracking using active contour models. J Real-Time Image Proc 14, 793–802 (2018). https://doi.org/10.1007/s11554-015-0531-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11554-015-0531-5