Abstract
In spite of great advancements in multimedia data storage and communication technologies, compression of medical data remains challenging. This paper presents a novel compression method for the compression of medical images. The proposed method uses Ripplet transform to represent singularities along arbitrarily shaped curves and Set Partitioning in Hierarchical Trees encoder to encode the significant coefficients. The main objective of the proposed method is to provide high quality compressed images by representing images at different scales and directions and to achieve high compression ratio. Experimental results obtained on a set of medical images demonstrate that besides providing multiresolution and high directionality, the proposed method attains high Peak Signal to Noise Ratio and significant compression ratio as compared with conventional and state-of-art compression methods.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Kesavamurthy, T., Thiyagarajan, K.: Lossless volumetric colour medical image compression using block based encoding. Int. J. Med. Eng. Inf (Inderscience Publishers) 4(3), 244–252 (2012). doi:10.1504/IJMEI.2012.048386
Babel, M., Pasteau, F., Strauss, C., Pelcat, M., Bedat, L., Blestel, M., Deforges, O.: Preserving Data Integrity of Encoded Medical Images: the LAR Compression Framework, Advances in Reasoning-Based Image Processing Intelligent Systems, pp. 91–125. Springer, Berlin (2012). doi:10.1007/978-3-642-24693-7_4
Hwang, W., Chine, C.F., Li, K.J.: Scalable medical data compression and transmission using wavelet transform for telemedicine applications. IEEE Trans. Inf. Tech. Biomed. 7(1), 54–63 (2003). doi:10.1109/TITB.2003.808499
Scholl, I., Aach, T., Deserno, T.M., Kuhlen, T.: Challenges of medical image processing. Comput. Sci. Res. Dev. 26, 5–13 (2011). doi:10.1007/s00450-010-01469
Sanchez, V., Abugharbieh, R., Nasiopoulos, P.: Symmetry-based scalable lossless compression of 3D medical image data. IEEE Trans. Med. Imaging 28(7), 1062–1072 (2009). doi:10.1109/TMI.2009.2012899
Xu, J., Yang, L., Wu, D.O.: Ripplet—a new transform for image processing. J. Vis. Commun. Image Represent. 21(7), 627–639 (2010). doi:10.1016/j.jvcir.2010.04.002
Said, Pearlman: A new fast and efficient image codec based on set partitioning in hierarchical trees. IEEE Trans. Circuits Syst. Video Technol. 6, 243–250 (1996). doi:10.1109/76.499834
Mallat, S.: A Wavelet Tour of Signal Processing, 2nd edn. Academic Press, New York (1999)
Candes, E.J.: Ridgelets: theory and applications. Ph.D. thesis, technical report. Department of Statistics, Stanford University, Stanford (1998)
Candes, E.J., Donoho, D.L.: Ridgelets: a key to higher-dimensional intermittency. Philos. Trans. Math. Phys. Eng. Sci. 357(1760), 2495–2509 (1999). doi:10.1098/rsta.1999.0444
Do, M., Vetterli, M.: The finite ridgelet transform for image representation. IEEE Trans. Image Process. 12(1), 16–28 (2003). doi:10.1109/TIP.2002806252
Starck, J.L., Candes, E.J., Donoho, D.L.: Curvelets, multiresolution representation, and scaling laws. IEEE Trans. Image Process. 11, 670–684 (2000). doi:10.1117/12.408568
Iqbal, M., Javed, M.Y., Qayyum, U.: Curvelet-based image compression with SPIHT. In: International conference on convergence information technology, pp. 961–965 (2007). doi:10.1109/ICCIT.2007.280
Lang, C., LI, H., LI, G., Zhao, X.: Combined sparse representation based on curvelet transform and local DCT for multi-layered image compression In: IEEE 3rd international conference on communication software and networks (ICCSN), pp. 316–320 (2011)
Do, M.N., Vetterli, M.: The contourlet transform: an efficient directional multiresolution image representation. IEEE Trans. Image Process. 14(12), 2091–2106 (2005). doi:10.1109/TIP.2005.859376
Eslami, R., Radha, H.: Wavelet-based contourlet coding using an SPIHT-like algorithm. In: Proceeding of the conference on information sciences and systems, Princeton, pp. 784–788 (2004)
Belbachir, A.N., Goebel, P.M.: The Contourlet Transform for Image Compression. Physics in Signal and Image Process. Toulouse, France (2005)
Lu, Y., Do, M.N.: Multidimensional directional filter banks and surfacelets. IEEE Trans. Image Process. 16(4), 918–931 (2007). doi:10.1109/TIP.2007.891785
Penneca, E.L., Mallat, S.: Sparse geometric image representation with bandelets. IEEE Trans. Image Process. 14(4), 423–438 (2005). doi:10.1109/TIP.2005.843753
Lim, W.Q.: The discrete shearlet transform: a new directional transform and compactly supported shearlet frames. IEEE Trans. Image Process. 19(5), 1166–1180 (2010). doi:10.1109/TIP.2010.2041410
Willett, R., Nowak, K.: Platelets: a multiscale approach for recovering edges and surfaces in photon-limited medical imaging. IEEE Trans. Med. Imaging 22(3), 332–350 (2003). doi:10.1109/TMI.2003.809622
Chen, Y.T., Tseng, D.C.: Wavelet-based medical image compression with adaptive prediction. Comput. Med. Imaging Graph. 31, 1–8 (2007)
Knezovic, J., Kovac, M., Klapan, I., Mlinaric, H., Vranjes, Z.: Application of lossless compression of medical images using prediction and contextual error modeling. Coll. Antropol 31(4), 1143–1150 (2007)
Hosseini, S.M., Nilchi, A.R.: Medical ultrasound image compression using contextual vector quantization. Comput. Biol. Med. 42, 743–750 (2012)
Jiang, H., Ma, Z., Hu, Y., Yang, B., Zhang, L.: Medical image compression based on vector quantization with variable block sizes in wavelet domain. Comput. Intell. Neurosci (Hindawi Publishing Corporation) 2012(5), 1–8 (2012)
Wallace, G.K.: The JPEG still picture compression standard. Commun. ACM 34, 31–44 (1991)
Ansari, M.A., Anand, R.S.: Implementation of efficient medical image compression algorithms with JPEG, wavelet transform and SPIHT. Int. J. Comput. Intell. Res. Appl. 2(1), 43–55 (2008)
Chen, Y.Y.: Medical image compression using DCT-based subband decomposition and modified SPIHT data organization. Int. J. Med. Inf. 76(10), 717–725 (2007)
Singh, S., Kumar, V., Verma, H.K.: Adaptive threshold-based block classification in medical image compression for teleradiology. Comput. Biol. Med. 37(6), 811–819 (2007)
Kim, C.Y.: Reevaluation of JPEG image compression to digitalized gastrointestinal endoscopic color images: a pilot study. Proc. SPIE Med. Imaging 3658, 420–426 (1999)
Beladgham, M., Bessaid, A., Lakhdar, A.M., Ahmed, A.: Improving quality of medical image compression using biorthogonal CDF wavelet based on lifting scheme and SPIHT coding. Serbian J. Electr. Eng. 8(2), 163–179 (2011)
Minasyan, S., Astola, J., Guevorkian, D.: An image compression scheme based on parametric Haar-like transform. IEEE Int. Symp. Circuits Syst. 3, 2088–2091 (2005)
Shapiro, J.M.: Embedded image coding using zerotrees of wavelet coefficients. IEEE Trans. Signal Process. 41, 3445–3463 (1993). doi:10.1109/78.258085
Said, A., Pearlman, W.: An image multiresolution representation for lossless and lossy compression. IEEE Trans. Image Process. 5, 1303–1310 (1996). doi:10.1109/83.535842
Taubman, D.: High performance scalable image compression with EBCOT. IEEE Trans. Image Process. 9(7), 1158–1170 (2000). doi:10.1109/83.847830
Lian, C.J., Chen, K.F., Chen, H.H., Chen, L.G.: Analysis and architecture design of block-coding engine for EBCOT in JPEG 2000. IEEE Trans. Circuits Syst. Video Technol. 13(3), 219–230 (2003). doi:10.1109/TCSVT.2003.809833
Pearlman, W.A., Islam, A., Nagaraj, N., Said, A.: Efficient, low complexity image coding with a set-partitioning embedded block coder. IEEE Trans. Circuits Syst. Video Technol. 14(11), 1219–1235 (2004). doi:10.1109/TCSVT.2004.835150
Simard, Y., Steinkrauss, D., Malvar, S.: On-line adaptation in image coding with a 2-D tarp filter. In: Proceeding of the IEEE data compression conference, pp. 23–32 (2002). doi:10.1109/DCC.2002.999940
Pan, H., Siu, W.C., Law, N.F.: Lossless image compression using binary wavelet transform. IET Image Process. 1(4), 353–362 (2007)
Sriraam, N., Shyamsundar, R.: 3D medical image compression using 3D wavelet coders. Digit. Signal Process. 21, 100–109 (2011). doi:10.1016/j.dsp.2010.06.002
Xu, J., Wu, D.: Ripplet transform for feature extraction. In: Proceeding of the SPIE, pp. 6970 (2008). doi:10.1117/12.777302
Donoho, L., Duncan, M.: Digital Curvelet Transform: Strategy, Implementation and Experiments, pp. 1–19. Stanford University, Stanford (1999)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Juliet, S., Rajsingh, E.B. & Ezra, K. A novel medical image compression using Ripplet transform. J Real-Time Image Proc 11, 401–412 (2016). https://doi.org/10.1007/s11554-013-0367-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11554-013-0367-9