Abstract
We describe an intelligent scheme to condense dense vision features, efficiently reducing the size of representation maps and keeping relevant information for further processing during subsequent stages. We have integrated our condensation algorithm in a low-level-vision system that obtains several vision-features in real-time working on an FPGA. Within this framework, our condensation algorithm allows for the transfer of information from the FPGA device (or processing chip) to any co-processor (from embedded ones to external PCs or DSPs) under technological constraints (such as bandwidth, memory and performance ones). Our condensation core processes 1024 × 1024 resolution images at up to 90 fps. Hence, our condensation module performs this process introducing an insignificant delay in the vision system. A hardware implementation usually implies a simplified version of the vision-feature extractor. Therefore, our condensation process inherently regularizes low-level-vision features, effectively reducing discontinuities and errors. The semidense representation obtained is compatible with mid-/high-level-vision modules, usually implemented as software components. In addition, our versatile semidense map is ready to receive feedback from attention processes, integrating task-driven attention (i.e. top-down information) in real time. Thus, the main advantages of this core are: real-time throughput, versatility, inherent regularization, scalability and feedback from other stages.
Similar content being viewed by others
References
Anguita. M., Diaz, J., Ros, E., Fernandez-Baldomero, F. Optimization strategies for high-performance computing of optical-flow in general-purpose processors. IEEE Trans on CSVT 19(10):1475–1488 (2009). doi:10.1109/TCSVT.2009.2026821
Baker, S., Scharstein, D., Lewis, J.P., Roth, S., Black, M., Szeliski, R. A database and evaluation methodology for optical flow. Int. J. Comput. Vis. 92(1):1–31 (2011). doi:10.1007/s11263-010-0390-2
Barranco, F., Tomasi, M., Diaz, J., Vanegas, M., Ros, E. Pipelined architecture for real-time cost-optimized extraction of visual primitives based on fpgas. Digital Signal Process. (2012). doi:10.1016/j.dsp.2012.09.017
Bay, H., Ess, A,, Tuytelaars, T., Van-Gool, L. Speeded-up robust features (surf). Comput. Vis. Image Underst. 110:346–359 (2008). doi:10.1016/j.cviu.2007.09.014
Benoit, A., Caplier, A., Durette, B., Herault, J. Using human visual system modeling for bio-inspired low level image processing. Comput. Vis. Image Underst. 114(7):758–773 (2010). doi:10.1016/j.cviu.2010.01.011
Boahen, K. A burst-mode word-serial address-event linki: Transmitter design. IEEE Trans Circuits Syst I, Reg Papers, pp. 1269–1280 (2004)
Camus, T. Calculating time-to-contact using real-time quantized optical flow. In: National Institute of Standards and Technology NISTIR 5609 (1995)
Canny, J. A computational approach to edge detection. IEEE Trans PAMI 8(6):679–698 (1986). doi:10.1109/TPAMI.1986.4767851
Chessa, M., Solari, F., Sabatini, S.P., Bisio, G.M. Motion interpretation using adjustable linear models. In: BMVC (2008)
core OCJH (2012) http://opencores.org/project, jpeg online
Daz, J., Ros, E., Mota, S., Carrillo, R. Local image phase, energy and orientation extraction using FPGAs. Int. J. Electron. 95:743–760 (2008). doi:10.1080/00207210801941200
Dong, F., Ye, X. Multiscaled texture synthesis using multisized pixel neighborhoods. IEEE Comput. Graph Appl. 27:41–47 (2007). doi:10.1109/MCG.2007.66
Gai, J., Stevenson, R. Optical flow estimation with p-harmonic regularization. In: Image Processing (ICIP), 2010 17th IEEE International Conference on, pp. 1969–1972 (2010)
Galić, I., Weickert, J., Welk, M., Bruhn, A., Belyaev, A., Seidel, H. Image compression with anisotropic diffusion. J. Math. Imag. Vis. 31:255–269 (2008). doi:10.1007/s10851-008-0087-0
Granados, S., Chumerin, N., Mota, S., Diaz, J. Obstacle detection using semidense representation maps. J. Vis. Commun. Image Represent. (2012) (submitted)
Itti, L., Koch, C. Computational modelling of visual attention. Nat. Rev. Neurosci. 2(3):194–203 (2001)
Kolb, H., Lipetz, L. The anatomical basis for colour vision in the vertebrate retina. Vis. Vis. Dysfunct. Percept. colour 6:128–145 (1991)
Kruger, N., Felsberg, M. A continuous formulation of intrinsic dimension. In: Proceedings of the British Machine Vision Conference (2003)
Kruger, N., Potzsch, M., Peters, G. Principles of Cortical Processing Applied to and Motivated by Artificial Object Recognition. Cambridge University Press, Cambridge (2000)
Lowe, D. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60:91–110 (2004). doi:10.1023/B:VISI.0000029664.99615.94
Luettgen, M., Clem-Karl, W., Willsky, A. Efficient multiscale regularization with applications to the computation of optical flow. IEEE Trans. Image Process. 3(1):41–64 (1994). doi:10.1109/83.265979
Mikolajczyk, K., Schmid, C.A performance evaluation of local descriptors. IEEE Trans. PAMI. 27(10), 1615–1630. doi:10.1109/TPAMI.2005.188
Ortigosa, E., Cañas, A., Ros, E., Martínez-Ortigosa, P., Mota, S., Díaz, J. Hardware description of multi-layer perceptrons with different abstraction levels. Microprocess. Microsyst. 30(7):435–444 (2006)
Pauwels, K., Kruger, N., Lappe, M., Worgotter, F., Van-Hulle, M. A cortical architecture on parallel hardware for motion processing in real time. J. Vis. 10(10), Art No 18, 1–21 (2010). doi:10.1167/10.10.18
Pauwels, K., Tomasi, M., Diaz-Alonso, J., Ros, E., Van-Hulle, M. A comparison of fpga and gpu for real-time phase-based optical flow, stereo, and local image features. IEEE Trans. Comput. 61(7):999–1012 (2012). doi:10.1109/TC.2011.120
Pugeault, N., Wörgötter, F., Krüger, N. Visual primitives: local, condensed, semantically rich visual descriptors and their applications in robotics. Int. J. Humanoid Robotics. 7(3):379–405 (2010)
Ralli, J., Díaz, J., Ros, E. A method for sparse disparity densification using voting mask propagation. J. Vis. Comput. Image Rep. 21(1):67–74 (2009). doi:10.1016/j.jvcir.2009.08.005
Sabatini, S., Gastaldi, G., Solari, F., Pauwels, K., Van-Hulle, M., Diaz, J., Ros, E., Pugeault, N., Krüger, N. A compact harmonic code for early vision based on anisotropic frequency channels. Comput. Vis. Image Underst. 114:681–699 (2010). doi: 10.1016/j.cviu.2010.03.008
Sanger, T. Stereo disparity computation using gabor filters. Biol. Cybern. 59:405–418 (1988). doi:10.1007/BF00336114
Sayood, K. Introduction to data compression. Morgan Kaufmann Publishers Inc., San Francisco (2000)
Shi, J., Tomasi, C. Good features to track. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition. pp. 593–600 (1994). doi:10.1109/CVPR.1994.323794
Solutions S (2012) http://www.sevensols.com. online
Tomasi, M., Vanegas, M., Barranco, F., Diaz, J., Ros, E. Massive parallel-hardware architecture for multi-scale stereo, optical flow and image-structure computation. IEEE Trans. CSVT 22, 282–294 (2011a). doi:10.1109/TCSVT.2011.2162260
Tomasi, M., Vanegas, M., Barranco, F., Diaz, J., Ros, E. Real-time architecture for a robust multi-scale stereo engine on fpga. IEEE Trans VLSI Systems 20, 2208–2219 (2011b). doi:10.1109/TVLSI.2011.2172007
Vanegas, M., Tomasi, M., Díaz, J., Vidal, E.R. Multi-port abstraction layer for fpga intensive memory exploitation applications. J. Syst. Architect. Embedded Syst. Des. 56(9):442–451 (2010)
Webpage D (2012) DRIVSCO European Project. http://www.pspc.dibe.unige.it/~drivsco/
Weems, C. Jr. Real-time considerations in the design of the image understanding architecture. Real Time Imag. 2:341–350 (1996). doi:10.1006/rtim.1996.0035
Xilinx (2012) http://www.xilinx.com. online
Acknowledgments
The authors thank A. L. Tate for revising their English text.
Author information
Authors and Affiliations
Corresponding author
Additional information
This work has been partially supported by the Spanish regional grant ITREBA (TIC-5060), the national grant ARC-VISION (TEC2010-15396) and the EU project TOMSY(FP7-270436).
Rights and permissions
About this article
Cite this article
Granados, S., Barranco, F., Mota, S. et al. On-chip semidense representation map for dense visual features driven by attention processes. J Real-Time Image Proc 9, 171–185 (2014). https://doi.org/10.1007/s11554-012-0320-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11554-012-0320-3