Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Memristive fuzzy edge detector

  • Special Issue
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

Fuzzy inference systems always suffer from the lack of efficient structures or platforms for their hardware implementation. In this paper, we tried to overcome this difficulty by proposing a new method for the implementation of the fuzzy rule-based inference systems. To achieve this goal, we have designed a multi-layer neuro-fuzzy computing system based on the memristor crossbar structure by introducing a new concept called the fuzzy minterm. Although many applications can be realized through the use of our proposed system, in this study we only show how the fuzzy XOR function can be constructed and how it can be used to extract edges from grayscale images. One main advantage of our memristive fuzzy edge detector (implemented in analog form) compared to other commonly used edge detectors is it can be implemented in parallel form, which makes it a powerful device for real-time applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Versace, M., Chandler, B.: The brain of a new machine. IEEE Spectr. 47(12), 30–37 (2010)

    Article  Google Scholar 

  2. Cioffi, J.M.: Limited-precision effects in adaptive filtering. IEEE Trans. Circuits. Syst. CAS-34(7), 821–833 (1987)

    Article  Google Scholar 

  3. Haykin, S.: Adaptive Filter Theory, second edn. Prentice-Hall, Englewood Cliffs (1991)

  4. Treichler, J.R., Johnson, C.R., Larimore, M.G.: Theory and Design of Adaptive Filters. Wiley, New York (1987)

    MATH  Google Scholar 

  5. Williams, R.S.: How we found the missing memristor. IEEE Spectr. 45(12), 28–35 (2008)

    Article  Google Scholar 

  6. Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453, 80–83 (2008)

    Article  Google Scholar 

  7. Chua, L.O.: Memristor—the missing circuit element. IEEE Trans. Circuit Theory CT-18(5), 507–519 (1971)

    Article  Google Scholar 

  8. Pershin, Y.V., Fontaine, S.L., Ventra, M.D.: Memristive model of amoeba’s learning. Phys. Rev. E 80, 021926 (2009)

    Article  Google Scholar 

  9. Pershin, Y.V., Ventra, M.D.: Practical approach to programmable analog circuits with memristors. IEEE Trans. Circuits Syst. I: Regular Paper 57(8), 1857–1864 (2010)

    Google Scholar 

  10. Merrikh-bayat, F., Shouraki, S.B.: Memristorbased circuits for performing basic arithmetic operations. Procedia Comput. Sci. J. 3, 128–132 (2011)

    Article  Google Scholar 

  11. Merrikh-bayat, F., Shouraki, S.B.: Memristor crossbar-based hardware implementation of IDS method. IEEE Trans. Fuzzy Syst. 19(6), 1083–1096 (2011)

    Article  Google Scholar 

  12. Kuekes, P.: Material implication: digital logic with memristors. In: Memristor and Memristive Systems Symposium, 21 November 2008

  13. Mouttet, B.L.: Proposal for memristors in signal processing. In: Nano-Net Conference, vol. 3, pp. 11–13, Sept 2008

  14. Merrikh-Bayat, F., Shouraki, S.B.: Mixed analog–digital crossbar-based hardware implementation of sign–sign LMS adaptive filter. Analog Integr. Circuits Signal Process 3(1), 41–48 (2011)

    Article  Google Scholar 

  15. Snider, G., Amerson, R., Carter, D., Abdalla, H., Qureshi, M.S., Leveille, J., Versace, M., Ames, H., Patrick, S., Chandler, B., Gorchetchnikov, A., Mingolla, E.: From synapses to circuitry: using memristive memory to explore the electronic brain. IEEE Comput. 44(2), 21–28 (2011)

    Article  Google Scholar 

  16. Afifi, A., Ayatollahi, A., Raissi, F.: Implementation of biologically plausible spiking neural network models on the memristor crossbar-based CMOS/nano circuits. In: European Conference on Circuit Theory and Design (ECCTD 2009), pp. 563–566 (2009)

  17. Snider, G.S.: Spike-timing-dependent learning in memristive nanodevices. In: IEEE International Symposium on Nanoscale Architectures (NANOARCH 2008), pp. 85–92, 12–13 June 2008

  18. McCulloch, W., Pitts, W.: A logical calculus of ideas immanent in nervous activity. Bull. Math. Biophys. 5, 115–133 (1943)

    Article  MATH  MathSciNet  Google Scholar 

  19. Fausett, L.: Neural Networks: Architectures, Algorithms and Applications. Prentice Hall, Englewood Cliffs (1994)

  20. Biolek, D., Biolek, Z., Biolkova, V.: SPICE modeling of memristive, memcapacitative and meminductive systems. In: European Conference on Circuit Theory and Design (ECCTD2009), pp. 249–252, Antalya, 23–27 August 2009

  21. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986)

    Article  Google Scholar 

  22. Mamdani, E.H., Assilian, S.: An experiment in linguistic synthesis with a fuzzy logic controller. Int. J. Man Mach. Stud. 7(1), 1–13 (1975)

    Article  MATH  Google Scholar 

  23. Sugeno, M., Kang, G.T.: Structure identification of fuzzy model. Fuzzy Sets Syst. 28, 15–33 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  24. Takagi, T., Sugeno, M.: Fuzzy Identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. 15, 116–132 (1985)

    Article  MATH  Google Scholar 

  25. Snider, G., Williams, R.S.: Nano/CMOS architectures using a field-programmable nanowire interconnect. Nanotechnology 18(3), 035204 (2007)

    Google Scholar 

Download references

Acknowledgments

The authors thank the anonymous reviewers for suggesting many useful comments to improve the quality of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farnood Merrikh-Bayat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Merrikh-Bayat, F., Bagheri Shouraki, S. & Merrikh-Bayat, F. Memristive fuzzy edge detector. J Real-Time Image Proc 9, 479–489 (2014). https://doi.org/10.1007/s11554-012-0254-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-012-0254-9

Keywords

Navigation