Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Deep learning-based segmentation of left ventricular myocardium on dynamic contrast-enhanced MRI: a comprehensive evaluation across temporal frames

  • Short communication
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

Cardiac perfusion MRI is vital for disease diagnosis, treatment planning, and risk stratification, with anomalies serving as markers of underlying ischemic pathologies. AI-assisted methods and tools enable accurate and efficient left ventricular (LV) myocardium segmentation on all DCE-MRI timeframes, offering a solution to the challenges posed by the multidimensional nature of the data. This study aims to develop and assess an automated method for LV myocardial segmentation on DCE-MRI data of a local hospital.

Methods

The study consists of retrospective DCE-MRI data from 55 subjects acquired at the local hospital using a 1.5 T MRI scanner. The dataset included subjects with and without cardiac abnormalities. The timepoint for the reference frame (post-contrast LV myocardium) was identified using standard deviation across the temporal sequences. Iterative image registration of other temporal images with respect to this reference image was performed using Maxwell’s demons algorithm. The registered stack was fed to the model built using the U-Net framework for predicting the LV myocardium at all timeframes of DCE-MRI.

Results

The mean and standard deviation of the dice similarity coefficient (DSC) for myocardial segmentation using pre-trained network Net_cine is 0.78 ± 0.04, and for the fine-tuned network Net_dyn which predicts mask on all timeframes individually, it is 0.78 ± 0.03. The DSC for Net_dyn ranged from 0.71 to 0.93. The average DSC achieved for the reference frame is 0.82 ± 0.06.

Conclusion

The study proposed a fast and fully automated AI-assisted method to segment LV myocardium on all timeframes of DCE-MRI data. The method is robust, and its performance is independent of the intra-temporal sequence registration and can easily accommodate timeframes with potential registration errors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Khan MA, Hashim MJ, Mustafa H, Baniyas MY, Al Suwaidi SKBM, AlKatheeri R, Alblooshi FMK, Almatrooshi MEAH, Alzaabi MEH, Al Darmaki RS, Lootah SNAH (2020) Global epidemiology of ischemic heart disease: results from the global burden of disease study. Cureus. https://doi.org/10.7759/CUREUS.9349

    Article  PubMed  PubMed Central  Google Scholar 

  2. Alskaf E, Dutta U, Scannell CM, Chiribiri A (2022) Deep learning applications in myocardial perfusion imaging, a systematic review and meta-analysis. Inf Med Unlocked 32:101055. https://doi.org/10.1016/J.IMU.2022.101055

    Article  Google Scholar 

  3. Greenwood JP, Herzog BA, Brown JM, Everett CC, Nixon J, Bijsterveld P, Maredia N, Motwani M, Dickinson CJ, Ball SG, Plein S (2016) Prognostic value of cardiovascular magnetic resonance and single-photon emission computed tomography in suspected coronary heart disease: long-term follow-up of a prospective, diagnostic accuracy cohort study. Ann Intern Med 165(1):1–9. https://doi.org/10.7326/M15-1801

    Article  PubMed  Google Scholar 

  4. Bazmpani MA, Nikolaidou C, Papanastasiou CA, Ziakas A, Karamitsos TD (2022) Cardiovascular magnetic resonance parametric mapping techniques for the assessment of chronic coronary syndromes. J Cardiovasc Develop Dis 9(12):443. https://doi.org/10.3390/JCDD9120443

    Article  CAS  Google Scholar 

  5. Canet EP, Janier MF, Revel D (1999) Magnetic resonance perfusion imaging in ischemic heart disease. J Magn Reson Imaging 10:423

    Article  CAS  PubMed  Google Scholar 

  6. Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, Pennell DJ, Rumberger JA, Ryan TJ, Verani MS (2002) Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. J Cardiovasc Magn Reson 4(2):203–210. https://doi.org/10.1081/JCMR-120003946

    Article  Google Scholar 

  7. Kim YC, Kim K, Choe YH (2023) Automatic calculation of myocardial perfusion reserve using deep learning with uncertainty quantification. Quant Imaging Med Surg 13(12):7936–7949. https://doi.org/10.21037/QIMS-23-840/COIF

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hsu LY, Kellman P, Arai AE (2008) Nonlinear myocardial signal intensity correction improves quantification of contrast-enhanced first-pass MR perfusion in humans. J Magn Reson Imaging 27(4):793–801. https://doi.org/10.1002/jmri.21286

    Article  PubMed  Google Scholar 

  9. Jacobs M, Benovoy M, Chang LC, Arai AE, Hsu LY (2016) Evaluation of an automated method for arterial input function detection for first-pass myocardial perfusion cardiovascular magnetic resonance. J Cardiovasc Magn Reson. https://doi.org/10.1186/s12968-016-0239-0

    Article  PubMed  PubMed Central  Google Scholar 

  10. Scannell CM, Veta M, Villa ADM, Sammut EC, Lee J, Breeuwer M, Chiribiri A (2020) Deep-learning-based preprocessing for quantitative myocardial perfusion MRI. J Magn Reson Imaging 51(6):1689–1696. https://doi.org/10.1002/jmri.26983

    Article  PubMed  Google Scholar 

  11. van Herten RLM, Chiribiri A, Breeuwer M, Veta M, Scannell CM (2022) Physics-informed neural networks for myocardial perfusion MRI quantification. Med Image Anal. https://doi.org/10.1016/j.media.2022.102399

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ishida M, Morton G, Schuster A, Nagel E, Chiribiri A (2010) Quantitative assessment of myocardial perfusion MRI. Curr Cardiovasc Imaging Rep 3(2):65–73. https://doi.org/10.1007/s12410-010-9013-0

    Article  Google Scholar 

  13. Schwab F, Ingrisch M, Marcus R, Bamberg F, Hildebrandt K, Adrion C, Gliemi C, Nikolaou K, Reiser M, Theisen D (2015) Tracer kinetic modeling in myocardial perfusion quantification using MRI. Magn Reson Med 73(3):1206–1215. https://doi.org/10.1002/mrm.25212

    Article  PubMed  Google Scholar 

  14. Thirion JP (1998) Image matching as a diffusion process: an analogy with Maxwell’s demons. Med Image Anal 2(3):243–260. https://doi.org/10.1016/S1361-8415(98)80022-4

    Article  CAS  PubMed  Google Scholar 

  15. Vercauteren T, Pennec X, Perchant A, Ayache N (2009) Diffeomorphic demons: efficient non-parametric image registration. Neuroimage. https://doi.org/10.1016/J.NEUROIMAGE.2008.10.040

    Article  PubMed  Google Scholar 

  16. Ronneberger O, Fischer P, Brox T (2015) U-net: Convolutional networks for biomedical image segmentation. Lecture notes in computer science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9351, pp 234–241. https://doi.org/10.1007/978-3-319-24574-4_28/COVER

  17. Crum WR, Camara O, Hill DLG (2006) Generalized overlap measures for evaluation and validation in medical image analysis. IEEE Trans Med Imaging 25(11):1451–1461. https://doi.org/10.1109/TMI.2006.880587

    Article  PubMed  Google Scholar 

  18. Kingma DP, Ba JL (2014) Adam: a method for stochastic optimization. In: 3rd International conference on learning representations, ICLR 2015 - conference track proceedings. https://arxiv.org/abs/1412.6980v9

  19. Zhang Z, Liu Q, Wang Y (2018) Road extraction by deep residual U-net. IEEE Geosci Remote Sens Lett 15(5):749–753. https://doi.org/10.1109/LGRS.2018.2802944

    Article  CAS  Google Scholar 

  20. Campello VM, Gkontra P, Izquierdo C, Martin-Isla C, Sojoudi A, Full PM, Maier-Hein K, Zhang Y, He Z, Ma J, Parreno M, Albiol A, Kong F, Shadden SC, Acero JC, Sundaresan V, Saber M, Elattar M, Li H, Lekadir K (2021) Multi-centre, multi-vendor and multi-disease cardiac segmentation: the mms challenge. IEEE Trans Med Imaging 40(12):3543–3554. https://doi.org/10.1109/TMI.2021.3090082

    Article  PubMed  Google Scholar 

  21. Bernard O, Lalande A, Zotti C, Cervenansky F, Yang X, Heng PA, Cetin I, Lekadir K, Camara O, Gonzalez Ballester MA, Sanroma G, Napel S, Petersen S, Tziritas G, Grinias E, Khened M, Kollerathu VA, Krishnamurthi G, Rohe MM, Jodoin PM (2018) Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: is the problem solved? IEEE Trans Med Imaging 37(11):2514–2525. https://doi.org/10.1109/TMI.2018.2837502

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support received from MedImg Lab members (IIT, Delhi) in carrying out the research and proofreading the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anup Singh.

Ethics declarations

Conflict of interest

The authors declare that none of the work reported in this study could have been influenced by any known competing financial interests or personal relationships.

Ethical approval

This is a retrospective study, and Institutional Ethics Committee (IEC) approval was obtained (IEC code no.: 2022-005-EMP-38).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 252 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jafari, R., Verma, R., Aggarwal, V. et al. Deep learning-based segmentation of left ventricular myocardium on dynamic contrast-enhanced MRI: a comprehensive evaluation across temporal frames. Int J CARS 19, 2055–2062 (2024). https://doi.org/10.1007/s11548-024-03221-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-024-03221-z

Keywords

Navigation