Abstract
Purpose
To develop and validate an automated assessment of surgical performance (AASP) system for objective and computerized assessment of pelvic lymph node dissection (PLND) as an integral part of robot-assisted radical cystectomy (RARC) using console-feed videos recorded during live surgery.
Methods
Video recordings of 20 PLNDs were included. The quality of lymph node clearance was assessed based on the features derived from the computer vision process which include: the number and cleared area of the vessels/nerve (N–Vs); image median color map; and mean entropy (measures the level of disorganization) in the video frame. The automated scores were compared to the validated pelvic lymphadenectomy appropriateness and completion evaluation (PLACE) scoring rated by a panel of expert surgeons. Logistic regression analysis was employed to compare automated scores versus PLACE scores.
Results
Fourteen procedures were used to develop the AASP algorithm. A logistic regression model was trained and validated using the aforementioned features with 30% holdout cross-validation. The model was tested on the remaining six procedures, and the accuracy of predicting the expert-based PLACE scores was 83.3%.
Conclusions
To our knowledge, this is the first automated surgical skill assessment tool that provides an objective evaluation of surgical performance with high accuracy compared to expert surgeons’ assessment that can be extended to any endoscopic or robotic video-enabled surgical procedure.
Similar content being viewed by others
References
Goh AC, Goldfarb DW, Sander JC, Miles BJ, Dunkin BJ (2012) Global evaluative assessment of robotic skills: validation of a clinical assessment tool to measure robotic surgical skills. J Urol 187(1):247–252
Hussein AA, Dibaj S, Hinata N, Field E, O’leary K, Kuvshinoff B, Mohler JL, Wilding G, Guru KA (2016) Development and validation of a quality assurance score for robot-assisted radical cystectomy: a 10-year analysis. Urology 97:124–129
Kozlowski J, Hussein A, Sharif M, Ahmed Y, May P, Fiorica T, Raheem S, Mohler J, Guru K (2017) PD46-11 Utilization of robotic anastomosis competency evaluation (race) for evaluation of surgical competency during urethro-vesical anastomosis. J Urol 197(4):e894–e895
Aggarwal R, Moorthy K, Darzi A (2004) Laparoscopic skills training and assessment. Br J Surg 91(12):1549–1558
Bilgiç T, Türkşen IB (2000) Measurement of membership functions: theoretical and empirical work. In: Fundamentals of fuzzy sets. Springer, Berlin, pp 195–227
Darzi A, Mackay S (2001) Assessment of surgical competence. Qual Saf Health Care 10(Suppl 2):ii64–ii69
Hajshirmohammadi I, Payandeh S (2007) Fuzzy set theory for performance evaluation in a surgical simulator. Presence 16(6):603–622
Reznick RK, Smee S, Baumber J, Cohen R, Rothman A, Blackmore D, Berard M (1993) Guidelines for estimating the real cost of an objective structured clinical examination. Acad Med 68(7):513–517
Riojas M, Feng C, Hamilton A, Rozenblit J (2011) Knowledge elicitation for performance assessment in a computerized surgical training system. Appl Soft Comput 11(4):3697–3708
Stylopoulos N, Cotin S, Maithel S, Ottensmeyer M, Jackson P, Bardsley R, Neumann P, Rattner D, Dawson S (2004) Computer-enhanced laparoscopic training system (CELTS): bridging the gap. Surg Endosc Other Interv Tech 18(5):782–789
Hussein AA, Ghani KR, Peabody J, Sarle R, Abaza R, Eun D, Hu J, Fumo M, Lane B, Montgomery JS (2017) Development and validation of an objective scoring tool for robot-assisted radical prostatectomy: prostatectomy assessment and competency evaluation. J Urol 197(5):1237–1244
Morineau T, Riffaud L, Morandi X, Villain J, Jannin P (2015) Work domain constraints for modelling surgical performance. Int J Comput Assist Radiol Surg 10(10):1589–1597
Zia A, Essa I (2018) Automated surgical skill assessment in RMIS training. Int J Comput Assist Radiol Surg 13(5):731–739
Datta V, Bann S, Mandalia M, Darzi A (2006) The surgical efficiency score: a feasible, reliable, and valid method of skills assessment. Am J Surg 192(3):372–378
Van Hove P, Tuijthof G, Verdaasdonk E, Stassen L, Dankelman J (2010) Objective assessment of technical surgical skills. Br J Surg 97(7):972–987
Dubin AK, Julian D, Tanaka A, Mattingly P, Smith R (2018) A model for predicting the GEARS score from virtual reality surgical simulator metrics. Surg Endosc 32(8):3576–3581
Raza SJ, Field E, Jay C, Eun D, Fumo M, Hu JC, Lee D, Mehboob Z, Nyquist J, Peabody JO (2015) Surgical competency for urethrovesical anastomosis during robot-assisted radical prostatectomy: development and validation of the robotic anastomosis competency evaluation. Urology 85(1):27–32
Raza SJ, Field E, Jay C, Eun D, Fumo M, Hu JC, Lee D, Mehboob Z, Nyquist J, Peabody JO, Sarle R, Stricker H, Yang Z, Wilding G, Mohler JL, Guru KA (2015) Surgical competency for urethrovesical anastomosis during robot-assisted radical prostatectomy: development and validation of the robotic anastomosis competency evaluation. Urology 85(1):27–32. https://doi.org/10.1016/j.urology.2014.09.017
Hussein AA, Sexton KJ, May PR, Meng MV, Hosseini A, Eun DD, Daneshmand S, Bochner BH, Peabody JO, Abaza R (2018) Development and validation of surgical training tool: cystectomy assessment and surgical evaluation (CASE) for robot-assisted radical cystectomy for men. Surg Endosc pp 1–7
Chen C, White L, Kowalewski T, Aggarwal R, Lintott C, Comstock B, Kuksenok K, Aragon C, Holst D, Lendvay T (2014) Crowd-sourced assessment of technical skills: a novel method to evaluate surgical performance. J Surg Res 187(1):65–71
Malpani A, Vedula SS, Chen CCG, Hager GD (2015) A study of crowdsourced segment-level surgical skill assessment using pairwise rankings. Int J Comput Assist Radiol Surg 10(9):1435–1447
Ganni S, Botden SM, Chmarra M, Goossens RH, Jakimowicz JJ (2018) A software-based tool for video motion tracking in the surgical skills assessment landscape. Surg Endosc 32(6):2994–2999
Suzuki T, Egi H, Hattori M, Tokunaga M, Sawada H, Ohdan H (2015) An evaluation of the endoscopic surgical skills assessment using a video analysis software program. Surg Endosc 29(7):1804–1808
Ahmidi N, Poddar P, Jones JD, Vedula SS, Ishii L, Hager GD, Ishii M (2015) Automated objective surgical skill assessment in the operating room from unstructured tool motion in septoplasty. Int J Comput Assist Radiol Surg 10(6):981–991
Pérez-Escamirosa F, Chousleb-Kalach A, del Carmen Hernández-Baro M, Sánchez-Margallo JA, Lorias-Espinoza D, Minor-Martínez A (2016) Construct validity of a video-tracking system based on orthogonal cameras approach for objective assessment of laparoscopic skills. Int J Comput Assist Radiol Surg 11(12):2283–2293
Zia A, Sharma Y, Bettadapura V, Sarin EL, Essa I (2018) Video and accelerometer-based motion analysis for automated surgical skills assessment. Int J Comput Assist Radiol Surg 13(3):443–455
Zia A, Sharma Y, Bettadapura V, Sarin EL, Ploetz T, Clements MA, Essa I (2016) Automated video-based assessment of surgical skills for training and evaluation in medical schools. Int J Comput Assist Radiol Surg 11(9):1623–1636
Oropesa I, Escamirosa FP, Sánchez-Margallo JA, Enciso S, Rodríguez-Vila B, Martínez AM, Sánchez-Margallo FM, Gómez EJ, Sánchez-González P (2018) Interpretation of motion analysis of laparoscopic instruments based on principal component analysis in box trainer settings. Surg Endosc 32(7):3096–3107
Bochner BH, Cho D, Herr HW, Donat M, Kattan MW, Dalbagni G (2004) Prospectively packaged lymph node dissections with radical cystectomy: evaluation of node count variability and node mapping. J Urol 172(4):1286–1290
Hellenthal NJ, Hussain A, Andrews PE, Carpentier P, Castle E, Dasgupta P, Kaouk J, Khan S, Kibel A, Kim H (2011) Lymphadenectomy at the time of robot-assisted radical cystectomy: results from the International Robotic Cystectomy Consortium. BJU Int 107(4):642–646
Konety BR, Joslyn SA, O’DONNELL MA (2003) Extent of pelvic lymphadenectomy and its impact on outcome in patients diagnosed with bladder cancer: analysis of data from the surveillance, epidemiology and end results program data base. J Urol 169(3):946–950
Baghdadi A, Cavuoto L, Hussein AA, Ahmed Y, Guru K (2018) Pd58-04 modeling automated assessment of surgical performance utilizing computer vision: proof of concept. J Urol 199(4):e1134–e1135
Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9(1):62–66
Gupta S, Mazumdar SG (2013) Sobel edge detection algorithm. Int J Comput Sci Manag Res 2(2):1578–1583
Duda RO, Hart PE (1972) Use of the Hough transformation to detect lines and curves in pictures. Commun ACM 15(1):11–15
Kleinbaum DG, Klein M (2010) Analysis of matched data using logistic regression. In: Logistic regression. Springer, Berlin, pp 389–428
Chaudhari A, Kulkarni J (2013) Local entropy based brain MR image segmentation. In: 2013 IEEE 3rd international advance computing conference (IACC), 2013. IEEE, pp 1229–1233
Altok M, Achim MF, Matin SF, Pettaway CA, Chapin BF, Davis JW (2018) A decade of robot-assisted radical prostatectomy training: time-based metrics and qualitative grading for fellows and residents. Urol Oncol 1:e13–e25
Guzzo TJ, Gonzalgo ML (2009) Robotic surgical training of the urologic oncologist. Urol Oncol 27(2):214–217. https://doi.org/10.1016/j.urolonc.2008.09.019
Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110
Wu H-Y, Rubinstein M, Shih E, Guttag J, Durand F, Freeman W (2012) Eulerian video magnification for revealing subtle changes in the world. ACM Trans Gr 31:1–8
Acknowledgements
Roswell Park Cancer Institute Alliance Foundation.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Ethical approval
This article does not contain any studies with human participants or animals performed by any of the authors.
Informed consent
The study included the de-identified videos and was considered by the Institutional Review Board at Roswell Park Comprehensive Cancer Center to be a non-human subject research.
Rights and permissions
About this article
Cite this article
Baghdadi, A., Hussein, A.A., Ahmed, Y. et al. A computer vision technique for automated assessment of surgical performance using surgeons’ console-feed videos. Int J CARS 14, 697–707 (2019). https://doi.org/10.1007/s11548-018-1881-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11548-018-1881-9