Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

FEM-based elasticity reconstruction using ultrasound for imaging tissue ablation

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

Success of ablation treatment depends on the accurate placement of the target ablation focus and the complete destruction of the pathological tissue. Thus, monitoring the formation, location, and size of the ablated lesion is essential. As ablated tissue gets stiffer, an option for ablation monitoring is ultrasound elastography, for imaging the tissue mechanical properties. Reconstruction of elasticity distribution can be achieved by solving an inverse problem from observed displacements, based on a deformable tissue model, commonly discretized by the finite element method (FEM). However, available reconstruction techniques are prone to noise and may achieve suboptimal accuracy.

Methods

We propose a novel inverse problem formulation and elasticity reconstruction method, in which both the elasticity parameters and the model displacements are estimated as independent parameters of an unconstrained optimization problem. Total variation regularization of spatial elasticity distribution is introduced in this formulation, providing robustness to noise.

Results

Our approach was compared to state of the art direct and iterative harmonic elastography techniques. We employed numerical simulation studies using various noise and inclusion contrasts, given multiple excitation frequencies. Compared to alternatives, our method leads to a decrease in RMSE of up to 50% and an increase in CNR of up to 11 dB in numerical simulations. The methods were also compared on an ex vivo bovine liver sample that was locally subjected to ablation, for which improved lesion delineation was obtained with our proposed method. Our method takes \(\sim 4\,\hbox {s}\) for \(20\times 20\) reconstruction grid.

Conclusions

We present a novel FEM problem formulation that improves reconstruction accuracy and inclusion delineation compared to currently available techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. M. Schmidt. minFunc: unconstrained differentiable multivariate optimization in Matlab. http://www.cs.ubc.ca/~schmidtm/Software/minFunc.html, 2005.

References

  1. Arnal B, Pernot M, Tanter M (2011) Monitoring of thermal therapy based on shear modulus changes: II. Shear wave imaging of thermal lesions. IEEE Trans Ultrason Ferroelectr Freq Control 58(8):1603–1611

    Article  PubMed  Google Scholar 

  2. Babuška I, Suri M (1992) Locking effects in the finite element approximation of elasticity problems. Numer Math 62(1):439–463

    Article  Google Scholar 

  3. Baki P, Sanabria SJ, Kosa G, Szekely G, Goksel O (2015) Thermal expansion imaging for monitoring lesion depth using m-mode ultrasound during cardiac rf ablation: in vitro study. Int J Comput Assist Radiol Surg 10(6):681–693

    Article  PubMed  Google Scholar 

  4. Castera L, Forns X, Alberti A (2008) Non-invasive evaluation of liver fibrosis using transient elastography. J Hepatol 48(5):835–847

    Article  PubMed  Google Scholar 

  5. Conn AR, Gould NI, Toint PL (2000) Trust region methods. SIAM, Philadelphia

    Book  Google Scholar 

  6. Cooper J, Gimpelson RJ (2004) Summary of safety and effectiveness data from FDA: a valuable source of information on the performance of global endometrial ablation devices. J Reprod Med 49(4):267–273

    PubMed  Google Scholar 

  7. Doyley M, Meaney P, Bamber J (2000) Evaluation of an iterative reconstruction method for quantitative elastography. Phys Med Biol 45(6):1521

    Article  PubMed  CAS  Google Scholar 

  8. Eskandari H, Salcudean SE, Rohling R (2008) Viscoelastic parameter estimation based on spectral analysis. IEEE Trans Ultrason Rerroelectr Freq Control 55(7):1611–1125

    Article  CAS  Google Scholar 

  9. Ferraioli G, Parekh P, Levitov AB, Filice C (2014) Shear wave elastography for evaluation of liver fibrosis. J Ultrasound Med 33(2):197–203

    Article  PubMed  Google Scholar 

  10. Gazelle GS, Goldberg SN, Solbiati L, Livraghi T (2000) Tumor ablation with radio-frequency energy. Radiology 217(3):633–646

    Article  PubMed  CAS  Google Scholar 

  11. Goksel O, Eskandari H, Salcudean SE (2013) Mesh adaptation for improving elasticity reconstruction using the fem inverse problem. IEEE Trans Med Imaging 32(2):408–418

    Article  PubMed  Google Scholar 

  12. Goldberg SN, Dupuy DE (2001) Image-guided radiofrequency tumor ablation: challenges and opportunities part I. J Vasc Interv Radiol 12(9):1021–1032

    Article  Google Scholar 

  13. Haissaguerre M, Jais P, Shah DC, Gencel L, Pradeau V, Garrigues S, Chouairi S, Hocini M, Métayer P, Roudaut R, Clementy J (1996) Right and left atrial radiofrequency catheter therapy of paroxysmal atrial fibrillation. J Cardiovasc Electrophysiol 7(12):1132–1144

    Article  PubMed  CAS  Google Scholar 

  14. He DS, Zimmer JE, Hynynen K, Marcus FI, Caruso AC, Lampe LF, Aguirre ML (1994) Preliminary results using ultrasound energy for ablation of the ventricular myocardium in dogs. Am J Cardiol 73(13):1029–1031

    Article  PubMed  CAS  Google Scholar 

  15. Honarvar M, Lobo J, Mohareri O, Salcudean S, Rohling R (2015) Direct vibro-elastography fem inversion in cartesian and cylindrical coordinate systems without the local homogeneity assumption. Phys Med Biol 60(9):3847

    Article  PubMed  CAS  Google Scholar 

  16. Honarvar M, Rohling R, Salcudean S (2016) A comparison of direct and iterative finite element inversion techniques in dynamic elastography. Phys Med Biol 61(8):3026

    Article  PubMed  CAS  Google Scholar 

  17. Honarvar M, Sahebjavaher R, Salcudean S, Rohling R (2012) Sparsity regularization in dynamic elastography. Phys Med Biol 57(19):5909

    Article  PubMed  CAS  Google Scholar 

  18. Hoskins PR, Martin K, Thrush A (2010) Diagnostic ultrasound: physics and equipment. Cambridge University Press, Cambridge

    Book  Google Scholar 

  19. Konishi K, Nakamoto M, Kakeji Y, Tanoue K, Kawanaka H, Yamaguchi S, Ieiri S, Sato Y, Maehara Y, Tamura S (2007) A real-time navigation system for laparoscopic surgery based on three-dimensional ultrasound using magneto-optic hybrid tracking configuration. Int J Comput Assist Radiol Surg 2(1):1–10

    Article  Google Scholar 

  20. Lencioni R, Cioni D, Bartolozzi C (2001) Percutaneous radiofrequency thermal ablation of liver malignancies: techniques, indications, imaging findings, and clinical results. Abdom Imaging 26(4):345–360

    Article  PubMed  CAS  Google Scholar 

  21. Liu DC, Nocedal J (1989) On the limited memory BFGS method for large scale optimization. Math Program 45(1):503–528

    Article  Google Scholar 

  22. Livraghi T, Solbiati L, Meloni MF, Gazelle GS, Halpern EF, Goldberg SN (2003) Treatment of focal liver tumors with percutaneous radio-frequency ablation: complications encountered in a multicenter study. Radiology 226(2):441–451

    Article  PubMed  Google Scholar 

  23. Mariani A, Kwiecinski W, Pernot M, Balvay D, Tanter M, Clement O, Cuenod C, Zinzindohoue F (2014) Real time shear waves elastography monitoring of thermal ablation: in vivo evaluation in pig livers. J Surg Res 188(1):37–43

    Article  PubMed  CAS  Google Scholar 

  24. McRury ID, Haines DE (1996) Ablation for the treatment of arrhythmias. Proc IEEE 84(3):404–416

    Article  Google Scholar 

  25. Orsi F, Arnone P, Chen W, Zhang L (2010) High intensity focused ultrasound ablation: a new therapeutic option for solid tumors. J Cancer Res Ther 6(4):414

    Article  PubMed  Google Scholar 

  26. Parikh N, Boyd S (2014) Proximal algorithms. Found Trends Optim 1(3):127–239

    Article  Google Scholar 

  27. Park E, Maniatty AM (2006) Shear modulus reconstruction in dynamic elastography: time harmonic case. Phys Med Biol 51(15):3697

    Article  PubMed  Google Scholar 

  28. Pethig R, Kell DB (1987) The passive electrical properties of biological systems: their significance in physiology, biophysics and biotechnology. Phys Med Biol 32(8):933

    Article  PubMed  CAS  Google Scholar 

  29. Rivaz H, Fleming I, Assumpcao L, Fichtinger G, Hamper U, Choti M, Hager G, Boctor E (2008) Ablation monitoring with elastography: 2D in-vivo and 3D ex-vivo studies. Med Image Comput Comput Assist Interv MICCAI 2008:458–466

    Google Scholar 

  30. Sandrin L, Fourquet B, Hasquenoph JM, Yon S, Fournier C, Mal F, Christidis C, Ziol M, Poulet B, Kazemi F (2003) Transient elastography: a new noninvasive method for assessment of hepatic fibrosis. Ultrasound Med Biol 29(12):1705–1713

    Article  PubMed  Google Scholar 

  31. Sarvazyan AP, Rudenko OV, Swanson SD, Fowlkes JB, Emelianov SY (1998) Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics. Ultrasound Med Biol 24(9):1419–1435

    Article  PubMed  CAS  Google Scholar 

  32. Souchon R, Bouchoux G, Maciejko E, Lafon C, Cathignol D, Bertrand M, Chapelon JY (2005) Monitoring the formation of thermal lesions with heat-induced echo-strain imaging: a feasibility study. Ultrasound Med Biol 31(2):251–259

    Article  PubMed  Google Scholar 

  33. Tzschätzsch H, Trong MN, Scheuermann T, Ipek-Ugay S, Fischer T, Schultz M, Braun J, Sack I (2016) Two-dimensional time-harmonic elastography of the human liver and spleen. Ultrasound Med Biol 42(11):2562–2571

    Article  PubMed  Google Scholar 

  34. Wang Z, Aarya I, Gueorguieva M, Liu D, Luo H, Manfredi L, Wang L, McLean D, Coleman S, Brown S (2012) Image-based 3D modeling and validation of radiofrequency interstitial tumor ablation using a tissue-mimicking breast phantom. Int J Comput Assist Radiol Surg 7(6):941–948

    Article  PubMed  Google Scholar 

  35. Webster JG, Hendee WR (1989) Encyclopedia of medical devices and instrumentation, volumes 1 4. Phys Today 42:76

    Article  Google Scholar 

  36. Whayne JG, Nath S, Haines DE (1994) Microwave catheter ablation of myocardium in vitro. Assessment of the characteristics of tissue heating and injury. Circulation 89(5):2390–2395

    Article  PubMed  CAS  Google Scholar 

  37. Zienkiewicz OC, Taylor RL (2000) The finite element method: solid mechanics, vol 2. Butterworth-Heinemann, London

    Google Scholar 

Download references

Acknowledgements

This work was funded by Swiss National Science Foundation (SNSF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corin F. Otesteanu.

Ethics declarations

Conflict of interest

All authors declare no conflict of interest.

Research involving human participants

No studies on human participants.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Otesteanu, C.F., Vishnevsky, V. & Goksel, O. FEM-based elasticity reconstruction using ultrasound for imaging tissue ablation. Int J CARS 13, 885–894 (2018). https://doi.org/10.1007/s11548-018-1714-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-018-1714-x

Keywords

Navigation