Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Patient-specific model-based segmentation of brain tumors in 3D intraoperative ultrasound images

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

Intraoperative ultrasound (iUS) imaging is commonly used to support brain tumor operation. The tumor segmentation in the iUS images is a difficult task and still under improvement because of the low signal-to-noise ratio. The success of automatic methods is also limited due to the high noise sensibility. Therefore, an alternative brain tumor segmentation method in 3D-iUS data using a tumor model obtained from magnetic resonance (MR) data for local MR–iUS registration is presented in this paper. The aim is to enhance the visualization of the brain tumor contours in iUS.

Methods

A multistep approach is proposed. First, a region of interest (ROI) based on the specific patient tumor model is defined. Second, hyperechogenic structures, mainly tumor tissues, are extracted from the ROI of both modalities by using automatic thresholding techniques. Third, the registration is performed over the extracted binary sub-volumes using a similarity measure based on gradient values, and rigid and affine transformations. Finally, the tumor model is aligned with the 3D-iUS data, and its contours are represented.

Results

Experiments were successfully conducted on a dataset of 33 patients. The method was evaluated by comparing the tumor segmentation with expert manual delineations using two binary metrics: contour mean distance and Dice index. The proposed segmentation method using local and binary registration was compared with two grayscale-based approaches. The outcomes showed that our approach reached better results in terms of computational time and accuracy than the comparative methods.

Conclusion

The proposed approach requires limited interaction and reduced computation time, making it relevant for intraoperative use. Experimental results and evaluations were performed offline. The developed tool could be useful for brain tumor resection supporting neurosurgeons to improve tumor border visualization in the iUS volumes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Noble JA, Boukerroui D (2006) Ultrasound image segmentation: a survey. IEEE Trans Med Imaging 25(8):987–1010

    Article  PubMed  Google Scholar 

  2. Xian M, Zhang Y, Cheng H (2015) Fully automatic segmentation of breast ultrasound images based on breast characteristics in space and frequency domains. Pattern Recognit 48(2):485–497

    Article  Google Scholar 

  3. Huang Q, Bai X, Li Y, Jin L, Li X (2014) Optimized graph-based segmentation for ultrasound images. Neurocomputing 129:216–224

    Article  Google Scholar 

  4. Huang Q-H, Lee S-Y, Liu L-Z, Lu M-H, Jin L-W, Li A-H (2012) A robust graph-based segmentation method for breast tumors in ultrasound images. Ultrasonics 52(2):266–275

    Article  PubMed  Google Scholar 

  5. Huang Q, Luo Y, Zhang Q (2017) Breast ultrasound image segmentation: a survey. Int J Comput Assist Radiol Surg 12(3):493–507

    Article  PubMed  Google Scholar 

  6. Qiu W, Chen Y, Kishimoto J, de Ribaupierre S, Chiu B, Fenster A, Yuan J (2017) Automatic segmentation approach to extracting neonatal cerebral ventricles from 3d ultrasound images. Med Image Anal 35:181–191

    Article  PubMed  Google Scholar 

  7. Yu Y, Chen Y, Chiu B (2016) Fully automatic prostate segmentation from transrectal ultrasound images based on radial bas-relief initialization and slice-based propagation. Comput Biol Med 74:74–90

    Article  PubMed  Google Scholar 

  8. Li X, Li C, Fedorov A, Kapur T, Yang X (2016) Segmentation of prostate from ultrasound images using level sets on active band and intensity variation across edges. Med Phys 43(6):3090–3103. https://doi.org/10.1118/1.4950721

  9. Ghose S, Oliver A, Mitra J, Mart R, Llad X, Freixenet J, Sidib D, Vilanova JC, Comet J, Meriaudeau F (2013) A supervised learning framework of statistical shape and probability priors for automatic prostate segmentation in ultrasound images. Med Image Anal 17(6):587–600

    Article  PubMed  Google Scholar 

  10. Bersvendsen J, Orderud F, Massey RJ, Foss K, Gerard O, Urheim S, Samset E (2016) Automated segmentation of the right ventricle in 3d echocardiography: a kalman filter state estimation approach. IEEE Trans Med Imaging 35(1):42–51

    Article  PubMed  Google Scholar 

  11. Bernard O, Bosch JG, Heyde B, Alessandrini M, Barbosa D, Camarasu-Pop S, Cervenansky F, Valette S, Mirea O, Bernier M, Jodoin PM, Domingos JS, Stebbing RV, Keraudren K, Oktay O, Caballero J, Shi W, Rueckert D, Milletari F, Ahmadi SA, Smistad E, Lindseth F, van Stralen M, Wang C, Smedby O, Donal E, Monaghan M, Papachristidis A, Geleijnse ML, Galli E, D’hooge J (2016) Standardized evaluation system for left ventricular segmentation algorithms in 3d echocardiography. IEEE Trans Med Imaging 35(4):967–977

    Article  PubMed  Google Scholar 

  12. Huang J, Yang X, Chen Y, Tang L (2013) Ultrasound kidney segmentation with a global prior shape. J Vis Commun Image Represent 24(7):937–943

    Article  Google Scholar 

  13. Destrempes F, Cardinal M-HR, Allard L, Tardif J-C, Cloutier G (2014) Segmentation method of intravascular ultrasound images of human coronary arteries. Comput Med Imaging Graph 38(2):91–103 Special Issue on Computing and Visualisation for Intravascular Imaging

    Article  PubMed  Google Scholar 

  14. Sun S, Sonka M, Beichel RR (2013) Graph-based ivus segmentation with efficient computer-aided refinement. IEEE Trans Med Imaging 32(8):1536–1549

    Article  PubMed  Google Scholar 

  15. Chalopin C, Krissian K, Meixensberger J, Müns A, Arlt F, Lindner D (2013) Evaluation of a semi-automatic segmentation algorithm in 3D intraoperative ultrasound brain angiography. Biomed Tech 58(3):293–302

    Article  Google Scholar 

  16. Ilunga-Mbuyamba E, Avina-Cervantes JG, Lindner D, Cruz-Aceves I, Arlt F, Chalopin C (2016) Vascular structure tracking in intraoperative 3D contrast-enhanced ultrasound data. Sensors 16(4):1–14

    Article  Google Scholar 

  17. Rueda S, Fathima S, Knight CL, Yaqub M, Papageorghiou AT, Rahmatullah B, Foi A, Maggioni M, Pepe A, Tohka J, Stebbing RV, McManigle JE, Ciurte A, Bresson X, Cuadra MB, Sun C, Ponomarev GV, Gelfand MS, Kazanov MD, Wang CW, Chen HC, Peng CW, Hung CM, Noble JA (2014) Evaluation and comparison of current fetal ultrasound image segmentation methods for biometric measurements: a grand challenge. IEEE Trans Med Imaging 33(4):797–813

    Article  PubMed  Google Scholar 

  18. Dahdouh S, Angelini ED, Grang G, Bloch I (2015) Segmentation of embryonic and fetal 3d ultrasound images based on pixel intensity distributions and shape priors. Med Image Anal 24(1):255–268

    Article  PubMed  Google Scholar 

  19. Berton F, Cheriet F, Miron M-C, Laporte C (2016) Segmentation of the spinous process and its acoustic shadow in vertebral ultrasound images. Comput Biol Med 72:201–211

    Article  PubMed  Google Scholar 

  20. Aventaggiato M, Conversano F, Pisani P, Casciaro E, Franchini R, Lay-Ekuakille A, Muratore M, Casciaro S (2016) Validation of an automatic segmentation method to detect vertebral interfaces in ultrasound images. IET Sci Meas Technol 10(1):18–27

    Article  Google Scholar 

  21. Ma J, Wu F, Jiang T, Zhao Q, Kong D (2017) Ultrasound image-based thyroid nodule automatic segmentation using convolutional neural networks. Int J Comput Assist Radiol Surg 12(11):1895–1910. https://doi.org/10.1007/s11548-017-1649-7

    Article  PubMed  Google Scholar 

  22. Lian J, Ma Y, Ma Y, Shi B, Liu J, Yang Z, Guo Y (2017) Automatic gallbladder and gallstone regions segmentation in ultrasound image. Int J Comput Assist Radiol Surg 12(4):553–568. https://doi.org/10.1007/s11548-016-1515-z

    Article  PubMed  Google Scholar 

  23. Ritschel K, Pechlivanis I, Winter S (2015) Brain tumor classification on intraoperative contrast-enhanced ultrasound. Int J Comput Assist Radiol Surg 10(5):531–540. https://doi.org/10.1007/s11548-014-1089-6

    Article  PubMed  Google Scholar 

  24. Reinertsen I, Lindseth F, Unsgaard G, Collins D (2007) Clinical validation of vessel-based registration for correction of brain-shift. Med Image Anal 11(6):673–684 [Online]. Available: http://www.sciencedirect.com/science/article/pii/S1361841507000679

  25. Muns A, Meixensberger J, Arnold S, Schmitgen A, Arlt F, Chalopin C, Lindner D (2011) Integration of a 3d ultrasound probe into neuronavigation. Acta Neurochir 153(7):1529–1533. https://doi.org/10.1007/s00701-011-0994-5

    Article  PubMed  Google Scholar 

  26. Unsgaard G, Selbekk T, Brostrup Muller T, Ommedal S, Torp SH, Myhr G, Bang J, Nagelhus Hernes TA (2005) Ability of navigated 3d ultrasound to delineate gliomas and metastases—comparison of image interpretations with histopathology. Acta Neurochir 147(12):1259–1269. https://doi.org/10.1007/s00701-005-0624-1

    Article  CAS  PubMed  Google Scholar 

  27. Farhat N, Kapur T, Kikinis R (2015) Chapter 6—role of computers and image processing in image-guided brain tumor surgery. In: Golby AJ (ed) Image-guided neurosurgery. Academic Press, Boston, pp 143–161

    Chapter  Google Scholar 

  28. Chang H, Chen Z, Huang Q, Shi J, Li X (2015) Graph-based learning for segmentation of 3d ultrasound images. Neurocomputing 151:632–644 Part 2

    Article  Google Scholar 

  29. Hodneland E, Lundervold A, Rrvik J, Munthe-Kaas AZ (2014) Normalized gradient fields for nonlinear motion correction of dce-mri time series. Comput Med Imaging Graph 38(3):202–210

    Article  PubMed  Google Scholar 

  30. Fischer B, Modersitzki J (2008) Ill-posed medicinean introduction to image registration. Inverse Probl 24(3):034008

    Article  Google Scholar 

  31. Fuerst B, Wein W, Mueller M, Navab N (2014) Automatic ultrasound MRI registration for neurosurgery using the 2d and 3d LC2 metric. Med Image Anal 18(8):1312–1319. Special issue on the 2013 conference on medical image computing and computer assisted intervention

  32. Rivaz H, Karimaghaloo Z, Fonov VS, Collins DL (2014) Nonrigid registration of ultrasound and mri using contextual conditioned mutual information. IEEE Trans Med Imaging 33(3):708–725

    Article  PubMed  Google Scholar 

  33. Hodneland E, Lundervold A, Rrvik J, Munthe-Kaas AZ, (2013) Normalized gradient fields and mutual information for motion correction of dce-mri images. In: 8th international symposium on image and signal processing and analysis (ISPA) Sept 2013, pp 516–521

  34. Lai Z, Hu J, Liu C, Taimouri V, Pai D, Zhu J, Xu J, Hua J (2010) Intra-patient supine-prone colon registration in CT colonography using shape spectrum. In: Jiang T, Navab N, Pluim JPW, Viergever MA (eds) Medical image computing and computer-assisted intervention—MICCAI 2010: 13th international conference, Beijing, China, September 20–24, 2010, proceedings, part I, Springer Berlin Heidelberg, Berlin, Heidelberg, pp 332–339

  35. Commandeur F, Simon A, Mathieu R, Nassef M, Ospina JD, Rolland Y, Haigron P, Crevoisier RD, Acosta O (2016) MRI to CT prostate registration for improved targeting in cancer external beam radiotherapy. IEEE J Biomed Health Inform 1(99):1

    Google Scholar 

  36. Liu JF, Cui FS, Liu ZJ, Liu JM (2015) A technique for prostate registration by finite element modeling. In: Jaffray DA (ed) World congress on medical physics and biomedical engineering, June 7–12, 2015, Toronto, Canada. Springer International Publishing, Cham, pp 870–873

  37. Xu R, Athavale P, Nachman A, Wright GA (2014) Multiscale registration of real-time and prior mri data for image-guided cardiac interventions. IEEE Trans Biomed Eng 61(10):2621–2632

    Article  PubMed  Google Scholar 

  38. Ng H-F (2006) Automatic thresholding for defect detection. Pattern Recognit Lett 27(14):1644–1649

    Article  Google Scholar 

  39. Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9(1):62–66

    Article  Google Scholar 

  40. Riva M, Hennersperger C, Milletari F, Katouzian A, Pessina F, Gutierrez-Becker B, Castellano A, Navab N, Bello L (2017) 3D intra-operative ultrasound and MR image guidance: pursuing an ultrasound-based management of brainshift to enhance neuronavigation. Int J Comput Assist Radiol Surg 12(10):1711–1725

    Article  PubMed  Google Scholar 

  41. Haber E, Modersitzki J (2006) Intensity gradient based registration and fusion of multi-modal images. In: Larsen R, Nielsen M, and Sporring J (eds) Medical image computing and computer-assisted intervention—MICCAI 2006: 9th international conference, Copenhagen, Denmark, October 1–6, 2006. Proceedings, Part II, Springer, Berlin, Heidelberg pp 726–733

  42. Modersitzki J (2009) Fair: flexible algorithms for image registration. Society for Industrial and Applied Mathematics, Philadelphia

    Book  Google Scholar 

  43. Meng Q, Lu X, Zhang B, Gu Y, Ren G, Huang X (2018) Research on the ROI registration algorithm of the cardiac CT image time series. Biomed Signal Process Control 40:71–82

    Article  Google Scholar 

  44. Farnia P, Ahmadian A, Shabanian T, Serej ND, Alirezaie J (2015) Brain-shift compensation by non-rigid registration of intra-operative ultrasound images with preoperative MR images based on residual complexity. Int J Comput Assist Radiol Surg 10(5):555–562

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors thank the University of Guanajuato for the provided financial support that allows concluding this research. Additionally, we would like to thank the department of neurosurgery, University Hospital Leipzig, for the clinical study and data collection in the context of an earlier research project funded by the German Research Society (Deutsche Forschungsgemeinschaft).

Funding

This work has been funded by the Mexican Council on Science and Technology (CONACyT) (Grant Number 493442).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Gabriel Avina-Cervantes.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. For this type of study, formal consent is not required.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ilunga-Mbuyamba, E., Avina-Cervantes, J.G., Lindner, D. et al. Patient-specific model-based segmentation of brain tumors in 3D intraoperative ultrasound images. Int J CARS 13, 331–342 (2018). https://doi.org/10.1007/s11548-018-1703-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-018-1703-0

Keywords

Navigation