Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Validation of a method for retroperitoneal tumor segmentation

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

In 2005, an application for surgical planning called AYRA\({\textregistered }\) was designed and validated by different surgeons and engineers at the Virgen del Rocío University Hospital, Seville (Spain). However, the segmentation methods included in AYRA and in other surgical planning applications are not able to segment accurately tumors that appear in soft tissue. The aims of this paper are to offer an exhaustive validation of an accurate semiautomatic segmentation tool to delimitate retroperitoneal tumors from CT images and to aid physicians in planning both radiotherapy doses and surgery.

Methods

A panel of 6 experts manually segmented 11 cases of tumors, and the segmentation results were compared exhaustively with: the results provided by a surgical planning tool (AYRA), the segmentations obtained using a radiotherapy treatment planning system (Pinnacle\(^{\textregistered }\)), the segmentation results obtained by a group of experts in the delimitation of retroperitoneal tumors and the segmentation results using the algorithm under validation.

Results

11 cases of retroperitoneal tumors were tested. The proposed algorithm provided accurate results regarding the segmentation of the tumor. Moreover, the algorithm requires minimal computational time—an average of 90.5% less than that required when manually contouring the same tumor.

Conclusion

A method developed for the semiautomatic selection of retroperitoneal tumor has been validated in depth. AYRA, as well as other surgical and radiotherapy planning tools, could be greatly improved by including this algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. AccuLite, AMIDE, Dicom2, Dicom3Tools, Offis, etc. https://www.xrayscan.com/software-free-dicom-viewers/. Accessed 11 Mar 2016

  2. IDICON et http://www.inf.u-szeged.hu/~idicon/. Accessed 11 Mar 2016

  3. Rubo Medical software et http://www.rubomedical.com/. Accessed 11 Mar 2016

  4. Clijmans T, Gelaude F, Mommaerts M, Suetens P and Vander Sloten J (2006) Computer supported pre-operative planning of craniosynostosis surgery: a MIMICS-integrated approach. In: CMBBE2006, pp. 38–42, Antibes, France

  5. EuHeart Project. http://www.euHeart.eu. Accessed 11 Mar 2016

  6. PASSPORT Project. http://www.vph-institute.org/news/digital-agenda-new-virtual-liver-technology-helps-detect-liver-tumours.html. Accessed 11 Mar 2015

  7. Proplan CMF software. http://cranio-maxillofacial.materialise.com/. Accessed 11 Mar 2016

  8. MIMICS. http://biomedical.materialise.com/mimics. Accessed 11 Mar 2016

  9. AYRA. http://www.ikiria.es/ayra_descripcion_eng.html. Accessed 11 Mar 2016

  10. Suárez C, Acha B, Serrano C, Parra C, Gómez T (2009) VirSSPA—a virtual reality tool for surgical planning workflow. Int J Comput Assist Radiol Surg 4(2):133–139. doi:10.1007/s11548-009-0284-3

    Article  PubMed  Google Scholar 

  11. Gacto P, Barrera F, Sicilia-Castro D, Miralles F, Collell M, Leal S, De La Higuera J, Parra C, Gómez-Cía T (2008) A three-dimensional virtual reality model for limb reconstruction in burned patients. BURNS J Int Soc Burn Inj 35(7):1042–1046. doi:10.1016/j.burns.2008.09.005

    Article  Google Scholar 

  12. Gómez-Cía T, Gacto-Sánchez P, Sicilia D, Suárez C, Acha B, Serrano C, Parra C, De La Higuera J (2009) The virtual reality tool VirSSPA in planning DIEP microsurgical breast reconstruction. Int J Comput Assist Radiol Surg 4(4):375–382. doi:10.1007/s11548-009-0311-4

    Article  PubMed  Google Scholar 

  13. Gacto-Sánchez P, Sicilia-Castro D, Gómez-Cía T, Lagares A, Collell T, Suárez-Mejías C, Parra C, Leal S, Infante-Cossio De, la Higuera JM (2010) Computerised tomography angiography with VirSSPA 3D software for perforator navigation improves perioperative outcomes in DIEP flap breast reconstruction. Plast Reconstr Surg 125:24–31

    Article  PubMed  Google Scholar 

  14. Gonzalez RC, Woods RE (2008) Digital image processing. Pearson Prentice Hall, Upper Saddle River

    Google Scholar 

  15. Pham DL, Xu C, Prince JL (2000) Current methods in medical image segmentation. Annu Rev Biomed Eng 2(2000):315–337

    Article  CAS  PubMed  Google Scholar 

  16. Heidari S, Abdullah MT, Abdullah LN (2015) A novel four-directional thresholding approach for lung computed-tomography images by using similarity-based segmentation technique. J Comput Sci 11(1):195–203. doi:10.3844/jcssp.2015.195.203

    Article  Google Scholar 

  17. Dehmeshki J, Amin H, Valdivieso M, Ye X (2008) Segmentation of pulmonary nodules in thoracic CT scans: a region growing approach. IEEE Trans Med Imaging 27(4):467–480. doi:10.1109/TMI.2007.907555

    Article  CAS  PubMed  Google Scholar 

  18. Wang XP, Zhang W, Cui Y (2015) Tumor segmentation in lung CT images based on support vector machine and improved level set. Optoelectron Lett 11(5):395–400. doi:10.1007/s11801-015-5148-1

    Article  Google Scholar 

  19. Foruzan AH, Chen YW, Zoroofi RA, Furukawa A, Sato Y, Hori M, Tomiyama N (2013) Segmentation of liver in low-contrast images using K-means clustering and geodesic active contour algorithms. IEICE Trans Inf Syst 96(4):798–807. doi:10.1587/transinf.E96.D.798

    Article  Google Scholar 

  20. Ashraf AB, Gavenonis SC, Daye D, Mies C, Rosen MA, Kontos DA (2013) Multichannel Markov random field framework for tumor segmentation with an application to classification of gene expression-based breast cancer recurrence risk. IEEE Trans Med Imaging 32(4):637–648. doi:10.1109/TMI.2012.2219589

    Article  PubMed  Google Scholar 

  21. Jiang J, Trundle P, Ren J (2010) Medical image analysis with artificial neural networks. Comput Med Imaging Graph 34(8):617–631. doi:10.1016/j.compmedimag.2010.07.003

    Article  CAS  PubMed  Google Scholar 

  22. Sethi G, Saini BS (2015) Segmentation of abdomen diseases using active contour models in CT images. Biomed Eng Appl Basis Commun. doi:10.4015/S1016237215500477

    Google Scholar 

  23. Ghose S, Oliver A, Martí R, Lladó X, Vilanova JC, Freixenet J, Mitra J, Sidibé D, Meriaudeau F (2012) A survey of prostate segmentation methodologies in ultrasound, magnetic resonance and computed tomography images. Comput Methods Programs Biomed 108(1):262–287. doi:10.1016/j.cmpb.2012.04.006

    Article  PubMed  Google Scholar 

  24. Qiu W, Yuan J, Kishimoto J, McLeod J, Chen Y, de Ribaupierre S, Fenster A (2015) User-guided segmentation of preterm neonate ventricular system from 3-D ultrasound images using convex optimization. Ultrasound Med Biol 41(2):542–556. doi:10.1016/j.ultrasmedbio.2014.09.019

    Article  PubMed  Google Scholar 

  25. Peng J, Wang Y, Kong D (2013) Liver segmentation with constrained convex variational model. Pattern Recogn Lett 43(1):81–88. doi:10.1016/j.patrec.2013.07.010

    Google Scholar 

  26. Zhou Y, Shi WR, Chen W, Chen YL, Li Y, Tan LW, Chen DQ (2015) Active contours driven by localizing region and edge-based intensity fitting energy with application to segmentation of the left ventricle in cardiac CT images. Neurocomputing 156:199–210. doi:10.1016/j.neucom.2014.12.061

    Article  Google Scholar 

  27. Ju W, Xiang D, Zhang B, Wang L, Kopriva I, Chen X (2015) Random walk and graph cut for co-segmentation of lung tumor on PET-CT images. IEEE Trans Image Process 24(12):5854–5867. doi:10.1109/TIP.2015.2488902

    Article  PubMed  Google Scholar 

  28. Casciaro S, Franchini R, Massoptier L, Casciaro E, Conversano F, Malvasi A, Lay-Ekuakille A (2012) Fully automatic segmentations of liver and hepatic tumors from 3-D computed tomography abdominal images: comparative evaluation of two automatic methods. IEEE Sens J 12(3):464–473. doi:10.1109/JSEN.2011.2108281

    Article  Google Scholar 

  29. Heimann T, Meinzer HP (2009) Statistical shape models for 3D medical image segmentation: a review. Med Image Anal 13(4):543–563. doi:10.1016/j.media.2009.05.004

    Article  PubMed  Google Scholar 

  30. Chen DR, Chang RF, Wu WJ, Moon WK, Wu WL (2003) 3-D breast ultrasound segmentation using active contour model. Ultrasound Med Biol 29(7):1017–1026. doi:10.1016/S0301-5629(03)00059-0

    Article  PubMed  Google Scholar 

  31. Droske M, Meyer B, Rumpf M, Schaller C (2005) An adaptive level set method for interactive segmentation of intracranial tumors. Neurol Res 27(4):363–370. doi:10.1179/016164105X48842

    Article  PubMed  Google Scholar 

  32. Qiu W, Yuan J, Ukwatta E, Sun Y, Rajchl M, Fenster A (2014) Prostate segmentation: an efficient convex optimization approach with axial symmetry using 3-D tRUS and MR images. IEEE Trans Med Imaging 33(4):947–960. doi:10.1109/TMI.2014.2300694

    Article  PubMed  Google Scholar 

  33. Yuan J, Bae E, Tai XC (2010) A study on continuous max-flow and min-cut approaches. In: Proceedings of the IEEE Computer Society conference on computer vision and pattern recognition, pp 2217–2224. doi:10.1109/CVPR.2010.5539903

  34. Yuan J, Ukwatta E, Tai XC, Fenster A, Schnoerr C (2012) A fast global optimization-based approach to evolving contours with generic shape prior. UCLA technical report CAM: 12-38

  35. Li C, Xu C, Gui C, Fox MD (2010) Distance regularized level set evolution and its application to image segmentation. IEEE Trans Image Process 19(12):3243–3254. doi:10.1109/TIP.2010.2069690

    Article  PubMed  Google Scholar 

  36. Boykov Y, Funka-Lea G (2006) Graph cuts and efficient N-D image segmentation. Int J Comput Vis 70(2):109–131. doi:10.1007/s11263-006-7934-5

    Article  Google Scholar 

  37. Chan TF, Vese LA (2001) Active contours without edges. IEEE Trans Image Process 10(2):266–277. doi:10.1109/83.902291

    Article  CAS  PubMed  Google Scholar 

  38. Yousefi H, Fatehi M, Amian M, Zoroofi RA (2013) A fully automated segmentation of radius bone based on active contour in wrist MRI data set. In: 2013 20th Iranian conference on biomedical engineering, ICBME 2013. doi:10.1109/ICBME.2013.6782190

  39. Iglesias JE, Sabuncu MR (2015) Multi-atlas segmentation of biomedical images: a survey. Med Image Anal 24(1):205–219. doi:10.1016/j.media.2015.06.012

    Article  PubMed  PubMed Central  Google Scholar 

  40. Li BN, Chui CK, Chang S, Ong SH (2012) A new unified level set method for semi-automatic liver tumor segmentation on contrast-enhanced CT images. Expert Syst Appl 39(10):9661–9668. doi:10.1016/j.eswa.2012.02.095

    Article  Google Scholar 

  41. Rajagopal R, Subbaiah P (2015) A survey on liver tumor detection and segmentation methods. ARPN J Eng Appl Sci 10(6):2681–2685

    Google Scholar 

  42. Kalpathy-Cramer J, Zhao B, Goldgof D, Gu Y, Wang X, Yang H, Tan Y, Gillies R, Napel S (2016) A comparison of lung nodule segmentation algorithms: methods and results from a multi-institutional study. J Digit Imaging 29(4):476–487. doi:10.1007/s10278-016-9859-z

    Article  PubMed  PubMed Central  Google Scholar 

  43. Litjens G, Toth R, van de Ven W, Hoeks C, Kerkstra S, van Ginneken B, Vincent G, Guillard G, Birbeck N, Zhang J, Strand R, Malmberg F, Ou Y, Davatzikos C, Kirschner M, Jung F, Yuan J, Qiu W, Gao Q, Edwards PE, Maan B, van der Heijden F, Ghose S, Mitra J, Dowling J, Barratt D, Huisman H, Madabhushi A (2014) Evaluation of prostate segmentation algorithms for MRI: the PROMISE12 challenge (2014). Med Image Anal 18(2):359–373. doi:10.1016/j.media.2013.12.002

    Article  PubMed  Google Scholar 

  44. Tavakoli V, Amini AA (2013) A survey of shaped-based registration and segmentation techniques for cardiac images. Comput Vis Image Underst 117(9):966–989. doi:10.1016/j.cviu.2012.11.017

    Article  Google Scholar 

  45. Punithakumar K, Yuan J, Ben Ayed I, Li S, Boykov Y (2012) A convex max-flow approach to distribution-based figure-ground separation. SIAM J Imaging Sci 5(4):1333–1354. doi:10.1137/110850372

    Article  Google Scholar 

  46. Strauss DC, Hayes AJ, Thomas JM (2011) Retroperitoneal tumours: review of management. Ann R Coll Surg Engl 93(4):275–280. doi:10.1308/003588411X571944

    Article  PubMed  PubMed Central  Google Scholar 

  47. Brennan C, Kajal D, Khalili K, Ghai S (2014) Solid malignant retroperitoneal masses—a pictorial review. Insights Imaging 5(1):53–65. doi:10.1007/s13244-013-0294-0

    Article  PubMed  Google Scholar 

  48. Rajiah P, Sinha R, Cuevas C, Dubinsky TJ, Bush WH, Kolokythas O (2011) Imaging of uncommon retroperitoneal masses. RadioGraphics 31(4):949–976. doi:10.1148/rg.314095132

    Article  PubMed  Google Scholar 

  49. Monsky WL, Jin B, Molloy C, Canter RJ, Li CS, Lin TC, Borys D, Mack W, Kim I, Buonocore MH, Chaudhari AJ (2012) Semi-automated volumetric quantification of tumor necrosis in soft tissue sarcoma using contrast-enhanced MRI. Anticancer Res 32(11):4951–4962

    PubMed  PubMed Central  Google Scholar 

  50. Suárez-Mejías C, Pérez-Carrasco JA, Serrano C, López-Guerra JL, Parra-Calderón C, Gómez-Cía T, Acha B (2016) Three dimensional segmentation of retroperitoneal masses using continuous convex relaxation and accumulated gradient distance for radiotherapy planning. Med Biol Eng Comput (MBEC). doi:10.1007/s11517-016-1505-x

  51. Pérez-Carrasco JA, Suárez-Mejías C, Serrano C, López-Guerra JL, Acha B (2014) Segmentation of retroperitoneal tumors using fast continuous max-flow algorithm. IFMBE Proc 41:360–363. doi:10.1007/978-3-319-00846-2_89

    Article  Google Scholar 

  52. Yuan J, Bae E, Xue-Cheng T, Yuri B (2010) A continuous max-flow approach to Potts model. In: ECCV 2010, Part VI, LNCS 6316, pp 379–392

  53. Vincent L (1998) Minimal path algorithms for the robust detection of linear features in gray images. In: ISSM, pp 331–338

  54. Mendoza C, Acha Piñero B, Serrano Gotarredona MC, Gómez Cía PT (2009) Self-assessed contrast-maximizing adaptive region growing. Lecture Notes in Computer Science, vol 580, pp 652–663

  55. Mendoza C, Acha Piñero B, Serrano Gotarredona MC, Gómez Cía PT (2012) Fast parameter-free region growing segmentation with application to surgical planning. Mach Vis Appl 23(1):165–177

    Article  Google Scholar 

  56. Pinnacle 9.8 at http://www.healthcare.philips.com/main/products/ros/products/pinnacle3_98/. Accessed 11 Mar 2016

  57. Jaccard P (1901) Étude comparative de la distribution florale dans une portion des Alpes et des Jura. Bull Soc Vaud Sci Nat 37:547–579

    Google Scholar 

  58. DICE coefficient at http://sve.loni.ucla.edu/instructions/metrics/dice/. Accessed 20 Nov 2015

  59. Chang H, Zhuang AH, Valentino DJ, Chi WC (2009) Performance measure characterization for evaluating neuroimage segmentation algorithms. NeuroImage 47:122–135. doi:10.1016/j.neuroimage.2009.03.068

    Article  PubMed  Google Scholar 

  60. Estrada J, Jepson A (2005) Quantitative evaluation of a novel image segmentation algorithm. In: IEEE Computer Society conference on computer vision and pattern recognition, CVPR, pp 1132–1139

  61. Xu J, Chutatape O, Chew P (2007) Automated optic disk boundary detection by modified active contour model. IEEE Trans Biomed Eng 54(3):473–482. doi:10.1109/TBME.2006.888831.63

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research has been cofinanced by P11-TIC-7727 (Government of Andalusia, Spain) and PT13/0006/0036RETIC (FEDER Funds and Department of Health, Regional Government of Andalusia). We would like to thank Jose Manuel Conde and María José Ortíz for their clinical contribution. VirSSPA is a software funded by the Andalusian Government, Spain and FEDER Funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José A. Pérez-Carrasco.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. This article does not contain any studies with animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suárez-Mejías, C., Pérez-Carrasco, J.A., Serrano, C. et al. Validation of a method for retroperitoneal tumor segmentation. Int J CARS 12, 2055–2067 (2017). https://doi.org/10.1007/s11548-017-1530-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-017-1530-8

Keywords

Navigation