Abstract
Purpose
When we register diffusion tensor tractography (DTT) to anatomical images such as fast imaging employing steady-state acquisition (FIESTA), we register the B0 image to FIESTA. Precise registration of the DTT B0 image to FIESTA is possible with non-rigid registration compared to rigid registration, although the non-rigid methods lack convenience. We report the effect of image data bounding box settings on registration accuracy using a normalized mutual information (NMI) method
Methods
MRI scans of 10 patients were used in this study. Registration was performed without modification of the bounding box in the control group, and the results were compared with groups re-registered using multiple bounding boxes limited to the region of interest (ROI). The distance of misalignment after registration at 3 anatomical characteristic points that are common to both FIESTA and B0 images was used as an index of accuracy.
Results
Mean (\(\pm \)SD) misalignment at the 3 anatomical points decreased significantly from \(5.99\pm 1.58\) to \(2.21\pm 1.24\) mm, \(p<0.0001\)), \(4.36\pm 1.58\) to \(1.48\pm 0.58\) mm, (\(p<0.0001)\), and \(5.21\pm 1.76\) to \(1.20\pm 0.74\) mm, (\(p<0.0001)\), each showing improvement compared to the control group
Conclusion
Narrowing the image data bounding box to the ROI improves the accuracy of registering B0 images to FIESTA by NMI method. With our proposed methodology, accuracy can be improved in extremely easy steps, and this methodology may prove useful for DTT registration to anatomical image
Similar content being viewed by others
References
Spicer MA, Apuzzo ML (2003) Virtual reality surgery: neurosurgery and the contemporary landscape. Neurosurgery 52(3):489–497 discussion 496–487
Malone HR, Syed ON, Downes MS, D’Ambrosio AL, Quest DO, Kaiser MG (2010) Simulation in neurosurgery: a review of computer-based simulation environments and their surgical applications. Neurosurgery 67(4):1105–1116. doi:10.1227/NEU.0b013e3181ee46d0
Gandhe AJ, Hill DLG, Studholme C, Hawkes DJ, Ruff CF, Cox T, Gleeson MJ, Strong AJ (1994) Combined and three-dimensional rendered multimodal data for planning cranial base surgery: a prospective evaluation. Neurosurgery 35(3):463
Stadie AT, Kockro RA, Reisch R, Tropine A, Boor S, Stoeter P, Perneczky A (2008) Virtual reality system for planning minimally invasive neurosurgery. Technical note. J Neurosurg 108(2):382–394. doi:10.3171/JNS/2008/108/2/0382
Satoh T, Onoda K, Date I (2007) Fusion imaging of three-dimensional magnetic resonance cisternograms and angiograms for the assessment of microvascular decompression in patients with hemifacial spasms. J Neurosurg 106(1):82–89
Kin T, Shin M, Oyama H, Kamada K, Kunimatsu A, Momose T, Saito N (2011) Impact of multiorgan fusion imaging and interactive 3-dimensional visualization for intraventricular neuroendoscopic surgery. Neurosurgery 69:40–48 discussion 48
Yoshino M, Kin T, Shojima M, Nakatomi H, Oyama H, Saito N (2012) A high-resolution method with increased matrix size can characterize small arteries around a giant aneurysm in three dimensions. Br J Neurosurg 26(6):927–928. doi:10.3109/02688697.2012.692840
Takai K, Kin T, Oyama H, Iijima A, Shojima M, Nishido H, Saito N (2011) The use of 3D computer graphics in the diagnosis and treatment of spinal vascular malformations. J Neurosurg Spine 15(6):654–659. doi:10.3171/2011.8.SPINE11155
Kin T, Oyama H, Kamada K, Aoki S, Ohtomo K, Saito N (2009) Prediction of surgical view of neurovascular decompression using interactive computer graphics. Neurosurgery 65(1):121–128. doi:10.1227/01.NEU.0000347890.19718.0A discussion 128–129
Kin T, Nakatomi H, Shojima M, Tanaka M, Ino K, Mori H, Kunimatsu A, Oyama H, Saito N (2012) A new strategic neurosurgical planning tool for brainstem cavernous malformations using interactive computer graphics with multimodal fusion images. J Neurosurg 117(1):78–88. doi:10.3171/2012.3.JNS111541
Hatipoglu HG, Durakoglugil T, Ciliz D, Yuksel E (2007) Comparison of FSE T2W and 3D FIESTA sequences in the evaluation of posterior fossa cranial nerves with MR cisternography. Diagn Interv Radiol 13(2):56–60
Sartoretti-Schefer S, Kollias S, Valavanis A (2000) Spatial relationship between vestibular schwannoma and facial nerve on three-dimensional T2-weighted fast spin-echo MR images. AJNR Am J Neuroradiol 21(5):810–816
Shigematsu Y, Korogi Y, Hirai T, Okuda T, Ikushima I, Sugahara T, Liang L, Takahashi M (1999) Contrast-enhanced CISS MRI of vestibular schwannomas: phantom and clinical studies. J Comput Assist Tomogr 23(2):224–231
Mikami T, Minamida Y, Yamaki T, Koyanagi I, Nonaka T, Houkin K (2005) Cranial nerve assessment in posterior fossa tumors with fast imaging employing steady-state acquisition (FIESTA). Neurosurg Rev 28(4):261–266. doi:10.1007/s10143-005-0394-5
Roundy N, Delashaw JB, Cetas JS (2012) Preoperative identification of the facial nerve in patients with large cerebellopontine angle tumors using high-density diffusion tensor imaging. J Neurosurg 116(4):697–702
Gerganov VM, Giordano M, Samii M, Samii A (2011) Diffusion tensor imaging-based fiber tracking for prediction of the position of the facial nerve in relation to large vestibular schwannomas. J Neurosurg doi:10.3171/2011.7.JNS11495
Chen DQ, Quan J, Guha A, Tymianski M, Mikulis D, Hodaie M (2011) Three-dimensional in vivo modeling of vestibular schwannomas and surrounding cranial nerves with diffusion imaging tractography. Neurosurgery 68(4):1077–1083. doi:10.1227/NEU.0b013e31820c6cbe
Kamada K, Todo T, Masutani Y, Aoki S, Ino K, Takano T, Kirino T, Kawahara N, Morita A (2005) Combined use of tractography-integrated functional neuronavigation and direct fiber stimulation. J Neurosurg 102(4):664–672
Villain N, Landeau B, Groussard M, Mevel K, Fouquet M, Dayan J, Eustache F, Desgranges B, Chetelat G (2010) A simple way to improve anatomical mapping of functional brain imaging. J Neuroimaging 20(4):324–333. doi:10.1111/j.1552-6569.2010.00470.x
Liu Y, Sajja BR, Uberti MG, Gendelman HE, Kielian T, Boska MD (2012) Landmark optimization using local curvature for point-based nonlinear rodent brain image registration. Int J Biomed Imaging. doi:10.1155/2012/635207
Gholipour A, Kehtarnavaz N, Briggs RW, Gopinath KS, Ringe W, Whittemore A, Cheshkov S, Bakhadirov K (2008) Validation of non-rigid registration between functional and anatomical magnetic resonance brain images. IEEE Trans Biomed Eng 55(2 Pt 1):563–571. doi:10.1109/TBME.2007.912641
Limbrick-Oldfield EH, Brooks JC, Wise RJ, Padormo F, Hajnal JV, Beckmann CF, Ungless MA (2012) Identification and characterisation of midbrain nuclei using optimised functional magnetic resonance imaging. Neuroimage 59(2):1230–1238. doi:10.1016/j.neuroimage.2011.08.016
Napadow V, Dhond R, Kennedy D, Hui KK, Makris N (2006) Automated brainstem co-registration (ABC) for MRI. Neuroimage 32(3):1113–1119. doi:10.1016/j.neuroimage.2006.05.050
Forbes KP, Pipe JG, Karis JP, Heiserman JE (2002) Improved image quality and detection of acute cerebral infarction with PROPELLER diffusion-weighted MR imaging. Radiology 225(2):551–555
Rohde GK, Barnett AS, Basser PJ, Marenco S, Pierpaoli C (2004) Comprehensive approach for correction of motion and distortion in diffusion-weighted MRI. Magn Reson Med 51(1):103–114. doi:10.1002/mrm.10677
Mangin JF, Poupon C, Clark C, Le Bihan D, Bloch I (2002) Distortion correction and robust tensor estimation for MR diffusion imaging. Med Image Anal 6(3):191–198
Nielsen JF, Ghugre NR, Panigrahy A (2004) Affine and polynomial mutual information coregistration for artifact elimination in diffusion tensor imaging of newborns. Magn Reson Imaging 22(9):1319–1323. doi:10.1016/j.mri.2004.08.024
Mohammadi S, Moller HE, Kugel H, Muller DK, Deppe M (2010) Correcting eddy current and motion effects by affine whole-brain registrations: evaluation of three-dimensional distortions and comparison with slicewise correction. Magn Reson Med 64(4):1047–1056. doi:10.1002/mrm.22501
Conflict of interest
The authors declare that they have no conflict of interest.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Yoshino, M., Kin, T., Saito, T. et al. Optimal setting of image bounding box can improve registration accuracy of diffusion tensor tractography. Int J CARS 9, 333–339 (2014). https://doi.org/10.1007/s11548-013-0934-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11548-013-0934-3