Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Optimal setting of image bounding box can improve registration accuracy of diffusion tensor tractography

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

When we register diffusion tensor tractography (DTT) to anatomical images such as fast imaging employing steady-state acquisition (FIESTA), we register the B0 image to FIESTA. Precise registration of the DTT B0 image to FIESTA is possible with non-rigid registration compared to rigid registration, although the non-rigid methods lack convenience. We report the effect of image data bounding box settings on registration accuracy using a normalized mutual information (NMI) method

Methods

MRI scans of 10 patients were used in this study. Registration was performed without modification of the bounding box in the control group, and the results were compared with groups re-registered using multiple bounding boxes limited to the region of interest (ROI). The distance of misalignment after registration at 3 anatomical characteristic points that are common to both FIESTA and B0 images was used as an index of accuracy.

Results

Mean (\(\pm \)SD) misalignment at the 3 anatomical points decreased significantly from \(5.99\pm 1.58\) to \(2.21\pm 1.24\) mm, \(p<0.0001\)), \(4.36\pm 1.58\) to \(1.48\pm 0.58\) mm, (\(p<0.0001)\), and \(5.21\pm 1.76\) to \(1.20\pm 0.74\) mm, (\(p<0.0001)\), each showing improvement compared to the control group

Conclusion

Narrowing the image data bounding box to the ROI improves the accuracy of registering B0 images to FIESTA by NMI method. With our proposed methodology, accuracy can be improved in extremely easy steps, and this methodology may prove useful for DTT registration to anatomical image

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Spicer MA, Apuzzo ML (2003) Virtual reality surgery: neurosurgery and the contemporary landscape. Neurosurgery 52(3):489–497 discussion 496–487

    Article  PubMed  Google Scholar 

  2. Malone HR, Syed ON, Downes MS, D’Ambrosio AL, Quest DO, Kaiser MG (2010) Simulation in neurosurgery: a review of computer-based simulation environments and their surgical applications. Neurosurgery 67(4):1105–1116. doi:10.1227/NEU.0b013e3181ee46d0

    Article  PubMed  Google Scholar 

  3. Gandhe AJ, Hill DLG, Studholme C, Hawkes DJ, Ruff CF, Cox T, Gleeson MJ, Strong AJ (1994) Combined and three-dimensional rendered multimodal data for planning cranial base surgery: a prospective evaluation. Neurosurgery 35(3):463

    Article  CAS  PubMed  Google Scholar 

  4. Stadie AT, Kockro RA, Reisch R, Tropine A, Boor S, Stoeter P, Perneczky A (2008) Virtual reality system for planning minimally invasive neurosurgery. Technical note. J Neurosurg 108(2):382–394. doi:10.3171/JNS/2008/108/2/0382

    Article  PubMed  Google Scholar 

  5. Satoh T, Onoda K, Date I (2007) Fusion imaging of three-dimensional magnetic resonance cisternograms and angiograms for the assessment of microvascular decompression in patients with hemifacial spasms. J Neurosurg 106(1):82–89

    Article  PubMed  Google Scholar 

  6. Kin T, Shin M, Oyama H, Kamada K, Kunimatsu A, Momose T, Saito N (2011) Impact of multiorgan fusion imaging and interactive 3-dimensional visualization for intraventricular neuroendoscopic surgery. Neurosurgery 69:40–48 discussion 48

    Article  Google Scholar 

  7. Yoshino M, Kin T, Shojima M, Nakatomi H, Oyama H, Saito N (2012) A high-resolution method with increased matrix size can characterize small arteries around a giant aneurysm in three dimensions. Br J Neurosurg 26(6):927–928. doi:10.3109/02688697.2012.692840

    Article  PubMed  Google Scholar 

  8. Takai K, Kin T, Oyama H, Iijima A, Shojima M, Nishido H, Saito N (2011) The use of 3D computer graphics in the diagnosis and treatment of spinal vascular malformations. J Neurosurg Spine 15(6):654–659. doi:10.3171/2011.8.SPINE11155

    Article  PubMed  Google Scholar 

  9. Kin T, Oyama H, Kamada K, Aoki S, Ohtomo K, Saito N (2009) Prediction of surgical view of neurovascular decompression using interactive computer graphics. Neurosurgery 65(1):121–128. doi:10.1227/01.NEU.0000347890.19718.0A discussion 128–129

    Article  PubMed  Google Scholar 

  10. Kin T, Nakatomi H, Shojima M, Tanaka M, Ino K, Mori H, Kunimatsu A, Oyama H, Saito N (2012) A new strategic neurosurgical planning tool for brainstem cavernous malformations using interactive computer graphics with multimodal fusion images. J Neurosurg 117(1):78–88. doi:10.3171/2012.3.JNS111541

    Article  PubMed  Google Scholar 

  11. Hatipoglu HG, Durakoglugil T, Ciliz D, Yuksel E (2007) Comparison of FSE T2W and 3D FIESTA sequences in the evaluation of posterior fossa cranial nerves with MR cisternography. Diagn Interv Radiol 13(2):56–60

    PubMed  Google Scholar 

  12. Sartoretti-Schefer S, Kollias S, Valavanis A (2000) Spatial relationship between vestibular schwannoma and facial nerve on three-dimensional T2-weighted fast spin-echo MR images. AJNR Am J Neuroradiol 21(5):810–816

    CAS  PubMed  Google Scholar 

  13. Shigematsu Y, Korogi Y, Hirai T, Okuda T, Ikushima I, Sugahara T, Liang L, Takahashi M (1999) Contrast-enhanced CISS MRI of vestibular schwannomas: phantom and clinical studies. J Comput Assist Tomogr 23(2):224–231

    Article  CAS  PubMed  Google Scholar 

  14. Mikami T, Minamida Y, Yamaki T, Koyanagi I, Nonaka T, Houkin K (2005) Cranial nerve assessment in posterior fossa tumors with fast imaging employing steady-state acquisition (FIESTA). Neurosurg Rev 28(4):261–266. doi:10.1007/s10143-005-0394-5

    Article  PubMed  Google Scholar 

  15. Roundy N, Delashaw JB, Cetas JS (2012) Preoperative identification of the facial nerve in patients with large cerebellopontine angle tumors using high-density diffusion tensor imaging. J Neurosurg 116(4):697–702

    Article  PubMed  Google Scholar 

  16. Gerganov VM, Giordano M, Samii M, Samii A (2011) Diffusion tensor imaging-based fiber tracking for prediction of the position of the facial nerve in relation to large vestibular schwannomas. J Neurosurg doi:10.3171/2011.7.JNS11495

  17. Chen DQ, Quan J, Guha A, Tymianski M, Mikulis D, Hodaie M (2011) Three-dimensional in vivo modeling of vestibular schwannomas and surrounding cranial nerves with diffusion imaging tractography. Neurosurgery 68(4):1077–1083. doi:10.1227/NEU.0b013e31820c6cbe

    Google Scholar 

  18. Kamada K, Todo T, Masutani Y, Aoki S, Ino K, Takano T, Kirino T, Kawahara N, Morita A (2005) Combined use of tractography-integrated functional neuronavigation and direct fiber stimulation. J Neurosurg 102(4):664–672

    Article  PubMed  Google Scholar 

  19. Villain N, Landeau B, Groussard M, Mevel K, Fouquet M, Dayan J, Eustache F, Desgranges B, Chetelat G (2010) A simple way to improve anatomical mapping of functional brain imaging. J Neuroimaging 20(4):324–333. doi:10.1111/j.1552-6569.2010.00470.x

    Article  PubMed Central  PubMed  Google Scholar 

  20. Liu Y, Sajja BR, Uberti MG, Gendelman HE, Kielian T, Boska MD (2012) Landmark optimization using local curvature for point-based nonlinear rodent brain image registration. Int J Biomed Imaging. doi:10.1155/2012/635207

    Google Scholar 

  21. Gholipour A, Kehtarnavaz N, Briggs RW, Gopinath KS, Ringe W, Whittemore A, Cheshkov S, Bakhadirov K (2008) Validation of non-rigid registration between functional and anatomical magnetic resonance brain images. IEEE Trans Biomed Eng 55(2 Pt 1):563–571. doi:10.1109/TBME.2007.912641

    Article  PubMed  Google Scholar 

  22. Limbrick-Oldfield EH, Brooks JC, Wise RJ, Padormo F, Hajnal JV, Beckmann CF, Ungless MA (2012) Identification and characterisation of midbrain nuclei using optimised functional magnetic resonance imaging. Neuroimage 59(2):1230–1238. doi:10.1016/j.neuroimage.2011.08.016

    Article  PubMed Central  PubMed  Google Scholar 

  23. Napadow V, Dhond R, Kennedy D, Hui KK, Makris N (2006) Automated brainstem co-registration (ABC) for MRI. Neuroimage 32(3):1113–1119. doi:10.1016/j.neuroimage.2006.05.050

    Article  PubMed  Google Scholar 

  24. Forbes KP, Pipe JG, Karis JP, Heiserman JE (2002) Improved image quality and detection of acute cerebral infarction with PROPELLER diffusion-weighted MR imaging. Radiology 225(2):551–555

    Article  PubMed  Google Scholar 

  25. Rohde GK, Barnett AS, Basser PJ, Marenco S, Pierpaoli C (2004) Comprehensive approach for correction of motion and distortion in diffusion-weighted MRI. Magn Reson Med 51(1):103–114. doi:10.1002/mrm.10677

    Article  CAS  PubMed  Google Scholar 

  26. Mangin JF, Poupon C, Clark C, Le Bihan D, Bloch I (2002) Distortion correction and robust tensor estimation for MR diffusion imaging. Med Image Anal 6(3):191–198

    Article  PubMed  Google Scholar 

  27. Nielsen JF, Ghugre NR, Panigrahy A (2004) Affine and polynomial mutual information coregistration for artifact elimination in diffusion tensor imaging of newborns. Magn Reson Imaging 22(9):1319–1323. doi:10.1016/j.mri.2004.08.024

    Article  PubMed  Google Scholar 

  28. Mohammadi S, Moller HE, Kugel H, Muller DK, Deppe M (2010) Correcting eddy current and motion effects by affine whole-brain registrations: evaluation of three-dimensional distortions and comparison with slicewise correction. Magn Reson Med 64(4):1047–1056. doi:10.1002/mrm.22501

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masanori Yoshino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoshino, M., Kin, T., Saito, T. et al. Optimal setting of image bounding box can improve registration accuracy of diffusion tensor tractography. Int J CARS 9, 333–339 (2014). https://doi.org/10.1007/s11548-013-0934-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-013-0934-3

Keywords

Navigation