Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Computer-aided nidus segmentation and angiographic characterization of arteriovenous malformations

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

Exact knowledge about the nidus of an arteriovenous malformation (AVM) and the connected vessels is often required for image-based research projects and optimal therapy planning. The aim of this work is to present and evaluate a computer-aided nidus segmentation technique and subsequent angiographic characterization of the connected vessels that can be visualized in 3D.

Methods

The proposed method was developed and evaluated based on 15 datasets of patients with an AVM. Each dataset consists of a high-resolution 3D and a 4D magnetic resonance angiography (MRA) image sequence. After automatic cerebrovascular segmentation from the 3D MRA dataset, a voxel-wise support vector machine classification based on four extracted features is performed to generate a new parameter map. The nidus is represented by positive values in this parameter map and can be extracted using volume growing. Finally, the nidus segmentation is dilated and used for an automatic identification of feeding arteries and draining veins by integrating hemodynamic information from the 4D MRA datasets.

Results

A quantitative comparison of the computer-aided AVM nidus segmentation results to manual gold-standard segmentations by two observers revealed a mean Dice coefficient of 0.835, which is comparable to the inter-observer agreement for which a mean Dice coefficient of 0.830 was determined. The angiographic characterization was visually rated feasible for all patients.

Conclusion

The presented computer-aided method enables a reproducible and fast extraction of the AVM nidus as well as an automatic angiographic characterization of the connected vessels, which can be used to support image-based research projects and therapy planning of AVMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Stapf C, Mast H, Sciacca RR, Berenstein A, Nelson PK, Gobin YP, Pile-Spellman J, Mohr JP (2003) The New York Islands AVM study: design, study progress, and initial results. Stroke 34(5): e29–e33

    Google Scholar 

  2. Fiehler J, Illies T, Piening M, Saring D, Forkert N, Regelsberger J, Grzyska U, Handels H, Byrne JV (2009) Territorial and microvascular perfusion impairment in brain arteriovenous malformations. AJNR Am J Neuroradiol 30(2):356–361

    Article  PubMed  CAS  Google Scholar 

  3. Choi JH, Mohr JP (2005) Brain arteriovenous malformations in adults. Lancet Neurol 4(5):299–308

    Article  PubMed  Google Scholar 

  4. Anbarasu A, Gould DA (2002) Diagnosis of an intracranial arteriovenous malformation using extracranial carotid Doppler sonography. J Clin Ultrasound 30(4):249–252

    Article  PubMed  Google Scholar 

  5. Lantz ER, Meyers PM (2008) Neuropsychological effects of brain arteriovenous malformations. Neuropsychol Rev 18(2):167–177

    Article  PubMed  Google Scholar 

  6. Ogilvy CS, Stieg PE, Awad I, Brown RD Jr, Kondziolka D, Rosenwasser R, Young WL, Hademenos G (2001) Recommendations for the management of intracranial arteriovenous malformations: a statement for healthcare professionals from a special writing group of the Stroke Council, American Stroke Association. Circulation 103(21):2644–2657

    Article  PubMed  CAS  Google Scholar 

  7. Bullitt E, Aylward S, Bernard EJ Jr, Gerig G (2001) Computer-assisted visualization of arteriovenous malformations on the home personal computer. Neurosurgery 48(3):576–582 (discussion 582–573)

    Google Scholar 

  8. Forkert ND, Fiehler J, Illies T, Möller DP, Handels H, Säring D (2012) 4D blood flow visualization fusing 3D and 4D MRA image sequences. J Magn Reson Imaging 36(2):443–453

    Article  PubMed  Google Scholar 

  9. Nyui Y, Ogawa K, Kunieda E (2000) Extraction of arteriovenous malformation with factor analysis. In: Proceedings of international conference on image processing. vol 622, pp 621–624

  10. Babin D, Pizurica A, Bellens R, De Bock J, Shang Y, Goossens B, Vansteenkiste E, Philips W (2012) Generalized pixel profiling and comparative segmentation with application to arteriovenous malformation segmentation. Med Image Anal 16(5):991–1002

    Article  PubMed  CAS  Google Scholar 

  11. Fink C, Ley S, Kroeker R, Requardt M, Kauczor HU, Bock M (2005) Time-resolved contrast-enhanced three-dimensional magnetic resonance angiography of the chest: combination of parallel imaging with view sharing (TREAT). Invest Radiol 40(1):40–48

    PubMed  Google Scholar 

  12. Kholmovski EG, Alexander AL, Parker DL (2002) Correction of slab boundary artifact using histogram matching. J Magn Reson Imaging 15(5):610–617

    Article  PubMed  Google Scholar 

  13. Sled JG, Zijdenbos AP, Evans AC (1998) A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging 17(1):87–97

    Article  PubMed  CAS  Google Scholar 

  14. Forkert ND, Säring D, Fiehler J, Illies T, Möller D, Handels H (2009) Automatic brain segmentation in time-of-flight MRA images. Methods Inf Med 48(5):399–407

    Article  PubMed  Google Scholar 

  15. Forkert ND, Schmidt-Richberg A, Fiehler J, Illies T, Möller D, Handels H, Säring D (2011) Fuzzy-based vascular structure enhancement in time-of-flight MRA images for improved segmentation. Methods Inf Med 50(1):74–83

    Google Scholar 

  16. Forkert ND, Schmidt-Richberg A, Fiehler J, Illies T, Möller D, Säring D, Handels H, Ehrhardt J (2013) 3D cerebrovascular segmentation combining fuzzy vessel enhancement and level-sets with anisotropic energy weights. Magn Reson Imaging 31(2):262–271

    Google Scholar 

  17. Nyström I, Smedby Ö (2000) New presentation method for magnetic resonance angiography images based on skeletonization. In: SPIE medical imaging: image display and visualization. pp 515–522

  18. Sato Y, Nakajima S, Shiraga N, Atsumi H, Yoshida S, Koller T, Gerig G, Kikinis R (1998) Three-dimensional multi-scale line filter for segmentation and visualization of curvilinear structures in medical images. Med Image Anal 2(2):143–168

    Article  PubMed  CAS  Google Scholar 

  19. Joachims T (1999) Making large-scale support vector machine learning practical. In: Schölkopf B, Burges CJC, Smola AJ (eds) Advances in kernel methods. MIT Press, Cambridge, MA, pp 169–184

  20. Forkert ND, Fiehler J, Ries T, Illies T, Möller D, Handels H, Säring D (2011) Reference-based linear curve fitting for bolus arrival time estimation in 4D MRA and MR perfusion-weighted image sequences. Magn Reson Med 65(1):289–294

    Google Scholar 

  21. Illies T, Forkert ND, Säring D, Wenzel K, Ries T, Regelsberger J, Wegscheider K, Fiehler J (2012) Persistent hemodynamic changes in ruptured brain arteriovenous malformations. Stroke 43(11):2910–2915

    Article  PubMed  Google Scholar 

  22. Spetzler RF, Martin NA (1986) A proposed grading system for arteriovenous malformations. J Neurosurg 65(4):476–483

    Article  PubMed  CAS  Google Scholar 

  23. Spetzler RF, Hargraves RW, McCormick PW, Zabramski JM, Flom RA, Zimmerman RS (1992) Relationship of perfusion pressure and size to risk of hemorrhage from arteriovenous malformations. J Neurosurg 76(6):918–923

    Article  PubMed  CAS  Google Scholar 

  24. Aoyama H, Shirato H, Katoh N, Kudo K, Asano T, Kuroda S, Ishikawa T, Miyasaka K (2005) Comparison of imaging modalities for the accurate delineation of arteriovenous malformation, with reference to stereotactic radiosurgery. Int J Radiat Oncol Biol Phys 62(4):1232–1238

    Article  PubMed  Google Scholar 

  25. Sato S, Kodama N, Sasaki T, Matsumoto M, Ishikawa T (2004) Perinidal dilated capillary networks in cerebral arteriovenous malformations. Neurosurgery 54(1):163–168 (discussion 168–170)

    Google Scholar 

  26. Miyasaka Y, Yada K, Ohwada T, Kitahara T, Kurata A, Irikura K (1992) An analysis of the venous drainage system as a factor in hemorrhage from arteriovenous malformations. J Neurosurg 76(2):239–243

    Article  PubMed  CAS  Google Scholar 

  27. Illies T, Forkert ND, Ries T, Regelsberger J, Fiehler J (2013) Classification of cerebral arteriovenous malformations and intranidal flow patterns by color-encoded 4D-hybrid-MRA. AJNR Am J Neuroradiol 34(1):46–53

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nils Daniel Forkert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Forkert, N.D., Illies, T., Goebell, E. et al. Computer-aided nidus segmentation and angiographic characterization of arteriovenous malformations. Int J CARS 8, 775–786 (2013). https://doi.org/10.1007/s11548-013-0823-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-013-0823-9

Keywords

Navigation