Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Layered mechanical and electrical properties of porcine articular cartilage

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The complex structure and composition of articular cartilage make its performance show depth-dependent characteristics, but its related parameters are not complete at present. In this study, porcine articular cartilage was divided into three zones along the thickness direction, and the cartilage tissue in each zone was tested for electrical impedance, compression relaxation, and permeability to obtain their mechanical and electrical impedance parameters. The results showed that there were significant differences in mechanical and electrical properties of cartilage tissue in different zones in which resistivity, elastic modulus, relaxation time, and final relaxation rate increased gradually from superficial zone to deep zone along the direction of cartilage thickness while the permeability decreased gradually. Bioimpedance analysis can capture the phenomenon of very slight histological changes, which is expected to provide information for predicting cartilage degeneration, but the electrical impedance parameters of cartilage are still very lacking. These data are expected to provide reference for the treatment of clinical osteoarthritis and the research of cartilage repair materials.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bergholt MS, St-Pierre JP, Off Ed Du GS, Parmar PA, Albro MB, Puetzer JL, Oyen ML, Stevens MM (2016) Raman spectroscopy reveals new insights into the zonal organization of native and tissue-engineered articular cartilage, Acs Central ence 885. https://doi.org/10.1021/acscentsci.6b00222

  2. Han G, Eriten M, Henak CR (2019) Rate-dependent adhesion of cartilage and its relation to relaxation mechanisms. J Mech Behav Biomed Mater 102:103493. https://doi.org/10.1016/j.jmbbm.2019.103493

    Article  CAS  PubMed  Google Scholar 

  3. Gu ARJ, Yong Wei (2009) Transport properties of cartilaginous tissues. Curr Rheumatol Rev 5(1):40–50. https://doi.org/10.2174/157339709787315320

    Article  PubMed  PubMed Central  Google Scholar 

  4. Schinagl RM, Gurskis D, Chen AC, Sah RL (1997) Depth-dependent confined compression modulus of full-thickness bovine articular cartilage. J Orthopaedic Res 15(4):499–506. https://doi.org/10.1002/jor.1100150404

    Article  CAS  Google Scholar 

  5. Wh A, Mw B, Hs C, Ksfa C, Tua C (2020) Layer dependence in strain distribution and chondrocyte damage in porcine articular cartilage exposed to excessive compressive stress loading. J Mech Behav Biomed Mater 112:104088. https://doi.org/10.1016/j.jmbbm.2020.104088

    Article  CAS  Google Scholar 

  6. Maroudas A, Bullough P (1968) Permeability of articular cartilage. Nature 219(5160):1260–1261. https://doi.org/10.1302/0301-620X.50B1.166

    Article  CAS  PubMed  Google Scholar 

  7. Mccutchen CW (1962) The frictional properties of animal joints. Wear 5(1):1–17. https://doi.org/10.1016/0043-1648(62)90176-X

    Article  Google Scholar 

  8. Frank E, Evans R, Lee C, Treppo S, Grodzinsky A (2004) Quantitative electrical impedance analysis of cartilage degradation. Biorheology 41(3–4):195

    CAS  PubMed  Google Scholar 

  9. Dean DA, Ramanathan T, Machado D, Sundararajan R (2008) Electrical impedance spectroscopy study of biological tissues. J Electrostat 66(3–4):165–177. https://doi.org/10.1016/j.elstat.2007.11.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Monsigny M, Roche AC, Kieda C, Mayer R, Midoux P (1988) Peptide and carbohydrate moieties as molecular signals in animal cell recognition, Cell to Cell Signals in Plant, Animal and Microbial Symbiosis

  11. Palanca M, Tozzi G, Cristofolini L (2015) The use of digital image correlation in the biomechanical area: a review. International Biomechanics 3(1):1–21. https://doi.org/10.1080/23335432.2015.1117395

    Article  Google Scholar 

  12. Fick JM, Huttu M, Lammi MJ, Korhonen RK (2014) Invitro glycation of articular cartilage alters the biomechanical response of chondrocytes in a depth-dependent manner - ScienceDirect. Osteoarthritis Cartilage 22(10):1410–1418. https://doi.org/10.1016/j.joca.2014.07.020

    Article  CAS  PubMed  Google Scholar 

  13. Jnc A, St A, Bc B, Tb A, Jrtj A, Uh A (2021) High resolution three-dimensional strain measurements in human articular cartilage. J Mech Behav Biomed Mater. https://doi.org/10.1016/j.jmbbm.2021.104806

    Article  Google Scholar 

  14. Erne OK, Reid JB, Ehmke LW, Sommers MB, Madey SM, Bottlang M (2005) Depth-dependent strain of patellofemoral articular cartilage in unconfined compression. J Biomech 38(4):667–672. https://doi.org/10.1016/j.jbiomech.2004.04.005

    Article  PubMed  Google Scholar 

  15. Braun RP, Mangana J, Goldinger S, French L, Dummer R, Marghoob AA (2017) Electrical impedance spectroscopy in skin cancer diagnosis. Dermatol Clin 35:489–493. https://doi.org/10.1016/j.det.2017.06.009

    Article  CAS  PubMed  Google Scholar 

  16. Constantine VI (2012) Short-term pulmonary effects of using an electronic cigarette impact on respiratory flow resistance, impedance, and exhaled nitric oxide. Chest 141(6):1400–1406. https://doi.org/10.1378/chest.11-2443

    Article  Google Scholar 

  17. Francesco M, Pietro S, Marco M, Ciccone P, Caldarola N (2019) Bioimpedance vector analysis predicts hospital length of stay in acute heart failure. Nutrition. https://doi.org/10.1016/j.nut.2018.10.028

    Article  PubMed  Google Scholar 

  18. Unal M, Cingoz F, Bagcioglu C, Sozer Y, Akkus O (2017) Interrelationships between electrical, mechanical and hydration properties of cortical bone. J Mech Behav Biomed Mater 77:12–23. https://doi.org/10.1016/j.jmbbm.2017.08.033

    Article  PubMed  Google Scholar 

  19. Armstrong CG, Mow VC (1982) Variations in the intrinsic mechanical properties of human articular cartilage with age, degeneration, and water content. J Bone J Surg Am 64(1):88. https://doi.org/10.2106/00004623-198264010-00013

    Article  CAS  Google Scholar 

  20. Kiviranta P, Lammentausta E, Toyras J, Kiviranta I, Jurvelin JS (2008) Indentation diagnostics of cartilage degeneration. Osteoarthritis Cartilage 16(7):796–804. https://doi.org/10.1016/j.joca.2007.10.016

    Article  CAS  PubMed  Google Scholar 

  21. Morita M, Aoki S, Matsuda Y (1992) ac imepedance behaviour of lithium electrode in organic electrolyte solutions containing additives. Electrochimica Acta 37(1):119–123. https://doi.org/10.1016/0013-4686(92)80020-M

  22. Kosterich JD, Foster KR, Pollack SR (1983) Dielectric permittivity and electrical conductivity of fluid saturated bone. IEEE Trans Biomed Eng 30(2):81. https://doi.org/10.1109/TBME.1983.325201

    Article  CAS  PubMed  Google Scholar 

  23. Shapiro EM, Borthakur A, Kaufman JH, Leigh JS, Reddy R (2001) Water distribution patterns inside bovine articular cartilage as visualized by1H magnetic resonance imaging. Osteoarthritis Cartilage 9(6):533–538. https://doi.org/10.1053/joca.2001.0428

    Article  CAS  PubMed  Google Scholar 

  24. Cseresnyés I, Rajkai K, Takács T, Vozáry E (2018) Electrical impedance phase angle as an indicator of plant root stress. Biosys Eng 169:226–232. https://doi.org/10.1016/j.biosystemseng.2018.03.004

    Article  Google Scholar 

  25. Gao L-L, Zhang C-Q, Gao H, Liu Z-D, Xiao P-P (2014) Depth and rate dependent mechanical behaviors for articular cartilage: Experiments and theoretical predictions. Mater Sci Eng C Mater Biol Appl 38:244–251. https://doi.org/10.1016/j.msec.2014.02.009

  26. Gm A, Vb A, Pab E, Pf C, Rb C, Aab E, Csde F, Jr A (2017) Microindentation sensor system based on an optical fiber Bragg grating for the mechanical characterization of articular cartilage by stress-relaxation - ScienceDirect. Sens Actuators, B Chem 252:440–449. https://doi.org/10.1016/j.snb.2017.05.156

  27. Pritzker K, Gay S, Jimenez SA, Ostergaard K, Pelletier JP, Revell PA, Salter D, Berg W (2006) Osteoarthritis cartilage histopathology: grading and staging. Osteoarthritis Cartilage 14(1):13–29. https://doi.org/10.1016/j.joca.2005.07.014

    Article  CAS  PubMed  Google Scholar 

  28. Holmes MH, Mow VC (1990) The nonlinear characteristics of soft gels and hydrated connective tissues in ultrafiltration. J Biomech 23(11):1145–1156. https://doi.org/10.1016/0021-9290(90)90007-P

    Article  CAS  PubMed  Google Scholar 

  29. A.R.J. Gu, Wei Yong,(2009) Transport properties of cartilaginous tissues, Current Rheumatology Reviews 5(1) -

  30. Mow VC, Hou JS, Owens JM, Ratcli A (1990) Biphasic and quasilinear viscoelastic theories for hydrated soft tissues. Springer, New York

    Book  Google Scholar 

  31. Tong L, Hao Z, Wan C, Wen S (2018) Detection of depth-depend changes in porcine cartilage after wear test using Raman spectroscopy. J Biophotonics 11:e201700217. https://doi.org/10.1002/jbio.201700217

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Nos. 11972242, 11632013), China Postdoctoral Science Foundation (2020M680913), and Shanxi Province Huajin Orthopedic Public Welfare Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaogang Wu or Weiyi Chen.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Zhang, K., Dong, H. et al. Layered mechanical and electrical properties of porcine articular cartilage. Med Biol Eng Comput 60, 3019–3028 (2022). https://doi.org/10.1007/s11517-022-02653-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-022-02653-6

Keywords

Navigation