Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Integrating a learned probabilistic model with energy functional for ultrasound image segmentation

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The segmentation of ultrasound (US) images is steadily growing in popularity, owing to the necessity of computer-aided diagnosis (CAD) systems and the advantages that this technique shows, such as safety and efficiency. The objective of this work is to separate the lesion from its background in US images. However, most US images contain poor quality, which is affected by the noise, ambiguous boundary, and heterogeneity. Moreover, the lesion region may be not salient amid the other normal tissues, which makes its segmentation a challenging problem. In this paper, an US image segmentation algorithm that combines the learned probabilistic model with energy functionals is proposed. Firstly, a learned probabilistic model based on the generalized linear model (GLM) reduces the false positives and increases the likelihood energy term of the lesion region. It yields a new probability projection that attracts the energy functional toward the desired region of interest. Then, boundary indicator and probability statistical–based energy functional are used to provide a reliable boundary for the lesion. Integrating probabilistic information into the energy functional framework can effectively overcome the impact of poor quality and further improve the accuracy of segmentation. To verify the performance of the proposed algorithm, 40 images are randomly selected in three databases for evaluation. The values of DICE coefficient, the Jaccard distance, root-mean-square error, and mean absolute error are 0.96, 0.91, 0.059, and 0.042, respectively. Besides, the initialization of the segmentation algorithm and the influence of noise are also analyzed. The experiment shows a significant improvement in performance.

Graphical abstract

A. Description of the proposed paper.

B. The main steps involved in the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Noble JA, Boukerroui D (2006) Ultrasound image segmentation: a survey. IEEE Trans Med 25(8):987–1010

    Article  Google Scholar 

  2. Gupta D, Anand RS (2017) A hybrid edge-based segmentation approach for ultrasound medical images. Biomed Signal Process 31:116–126

    Article  Google Scholar 

  3. Cunningham RJ, Harding PJ, Loram ID (2017) Real-time ultrasound segmentation, analysis and visualisation of deep cervical muscle structure. IEEE Trans 36:653–665

    Google Scholar 

  4. Torres HR, Queirósand S, Morais P (2018) Kidney segmentation in ultrasound, magnetic resonance and computed tomography images: a systematic review. Comput Methods Prog Biomed 157:49–67

    Article  Google Scholar 

  5. Faisal A, Ng SC, Goh SL, Lai KW (2018) Knee cartilage segmentation and thickness computation from ultrasound images. Med Biol Eng Comput 56(4):657–669

    Article  PubMed  Google Scholar 

  6. Nugroho A, Hidayat R, Nugroho HA et al (2020) Combinatorial active contour bilateral filter for ultrasound image segmentation. Journal of medical imaging (Bellingham, Wash) 7(5):057003

    Google Scholar 

  7. Kass WA, Terzopoulos D (1988) Snakes: active contour models. Int J Comput Vis 1:321–331

    Article  Google Scholar 

  8. Caselles KR, Sapiro G (1977) Geodesic active contours. Int J Comput Vis 1:61–79

    Google Scholar 

  9. Chan VLA (2001) Active contours without edges. IEEE Trans Image Process 10:266–277

    Article  PubMed  CAS  Google Scholar 

  10. Fang L, Qiu T, Yin L (2018) Active contour model driven by global and local intensity information for ultrasound image segmentation. Comput Math Appl 75(12):4286–4299

    Article  Google Scholar 

  11. Ilunga-Mbuyamba E, Cruz-Duarte JM, Avina-Cervantes JG (2016) Active contours driven by cuckoo search strategy for brain tumour images segmentation. Comput Math Appl 56:59–68

    Google Scholar 

  12. Yuan J (2012) Active contour driven by region-scalable fitting and local Bhattacharyya distance energies for ultrasound image segmentation. IET Image Process 78:1075–1083

    Article  Google Scholar 

  13. Fang L, Qiu T, Zhao H, Lv F (2019) A hybrid active contour model based on global and local information for medical image segmentation. Multidim Syst Sign Process Appl 30:689–703

    Article  Google Scholar 

  14. Sussman M, Smereka P, Osher S (1994) A level set approach for computing solutions to incompressible two-phase flow. J Comput Phys 119:146–159

    Article  Google Scholar 

  15. Kichenassamy S, Kumar A, Olver P, Tannenbaum A, Yezzy A (1995) Gradient flows and geometric active contour models. Proceedings of IEEE International Conference on Computer Vision:810–815

  16. Li C, Kao CY, Gore JC, Ding Z (2008) Minimization of region-scalable fitting energy for image segmentation. IEEE Trans Image Process 17(10):1940–1949

    Article  PubMed  PubMed Central  Google Scholar 

  17. Zhang K, Zhang L, Lam KM, Zhang D (2016) A level set approach to image segmentation with intensity inhomogeneity. IEEE Transactions on Cybernetics 46(2):546–557

    Article  PubMed  Google Scholar 

  18. Wang L, Chen G, Shi D, Chang Y, Chan S, Pu J, Yang X (2018) Active contours driven by edge entropy fitting energy for image segmentation. Signal Process 149:27–35

    Article  Google Scholar 

  19. Ouaknin G, Laachi N, Bochkov D, Delaney K, Fredrickson GH, Gibou F (2017) Functional level-set derivative for a polymer self consistent field theory Hamiltonian. J Comput Phys 345:207–223

    Article  CAS  Google Scholar 

  20. Wang X-F, Min H, Zou L, Zhang Y-G (2015) A novel level set method for image segmentation by incorporating local statistical analysis and global similarity measurement. Pattern Recogn 48(1):189–204

    Article  Google Scholar 

  21. Ai D, Komatsu M, Sakai A et al (2020) Image segmentation of the ventricular septum in fetal cardiac ultrasound videos based on deep learning using time-series information. Biomolecules 10(11):1526–1543

    Article  CAS  Google Scholar 

  22. Vakanski A, Xian M, Freer P (2020) Attention-enriched deep learning model for breast tumor segmentation in ultrasound images. Ultrasound Med Biol 46(10):2819–2833

    Article  PubMed  Google Scholar 

  23. Ma C, Luo G, Wang K (2014) Concatenated and connected random forests with multiscale patch driven active contour model for automated brain tumor segmentation of MR images. IEEE Trans on Medical Imaging 37(8):1943–1954

    Article  Google Scholar 

  24. Hafifiane A, Vieyres P, Delbos A (2014) Phase-based probabilistic active contour for nerve detection in ultrasound images for regional anesthesia. Comput Biol Med 52(1):88–95

    Article  Google Scholar 

  25. Abdelsamea MM, Gnecco G, Gaber MM (2017) A SOM-based Chan-Vese model for unsupervised image segmentation. Soft Comput vol 21(8):2047–2067

    Article  Google Scholar 

  26. Pratondo A, Chui CK, Ong SH (2016) Robust edge-stop functions for edge-based active contour models in medical image segmentation. IEEE Signal Process Letters 23(2):222–226

    Article  Google Scholar 

  27. Pratondo A, Chui CK, Ong SH (2017) Integrating machine learning with region-based active contour models in medical image segmentation. J Vis Commun Image R 43:1–9

    Article  Google Scholar 

  28. Souleymane B, Gao X, Wang B (2013) A fast and robust level set method for image segmentation using fuzzy clustering and lattice Boltzmann method. IEEE T Cybern 43(3):910–920

    Article  Google Scholar 

  29. Wang L, Pan C (2014) Robust level set image segmentation via a local correntropy-based K-means clustering. Pattern Recogn 47(5):1917–1925

    Article  Google Scholar 

  30. Li BN, Qin J, Wang R, Wang M, Li X (2016) Selective level set segmentation using fuzzy region competition. IEEE Access 4:4777–4788

    Article  Google Scholar 

  31. Bi H, Jiang YB, Li H et al (2018) Active contours driven by local rayleigh distribution fitting energy for ultrasound image segmentation. IEICE Trans Inf Syst E101.D(7):1933–1937

    Article  Google Scholar 

  32. Faisal A, Ng SC, Goh SL et al (2015) Multiple LREK active contours for knee meniscus ultrasound image segmentation. IEEE Trans Med Imaging 34(10):2162–2171

    Article  PubMed  Google Scholar 

  33. Zeng Y, Tsui P, Wu WW et al (2021) Fetal ultrasound image segmentation for automatic head circumference biometry using deeply supervised attention-gated V-Net. J Digit Imaging 34(1):134–148

    Article  PubMed  Google Scholar 

  34. Xia X-G (1996) On characterization of the optimal biorthogonal window functions for Gabor transform. IEEE Trans Signal Process 44(1):133–136

    Article  Google Scholar 

  35. Chao H, Zheng YF, Ahalt SC (2002) Object tracking using the Gabor wavelet transform and the golden section algorithm. IEEE Transactions on Multimedia 4(4):528–538

    Article  Google Scholar 

  36. Meng X, Wu S, Zhu J (2018) A unified bayesian inference framework for generalized linear models. IEEE Signal Process Lett 25(3):398–402

    Article  Google Scholar 

  37. Friedman J, Hastie T, Tibshirani R (2010) Regularization paths for generalized linear models via coordinate descent. J Stat Softw 33(1):1–22

    Article  PubMed  PubMed Central  Google Scholar 

  38. Cardinale, Sbalzarini IF et al (2013) Int J Comput Vis 140(1):69–93

    Google Scholar 

  39. Shen J, Zhang D, Zhang FH et al (2018) AFM characterization of patterned sapphire substrate with dense cone arrays: image artifacts and tip-cone convolution effect. Appl Surf Sci 433:358–366

    Article  CAS  Google Scholar 

  40. Kloucha MK, Mourid T (2019) Best linear predictor of a C[0,1]-valued functional autoregressive process. Statistics and Probability Letters 150:114–120

    Article  Google Scholar 

  41. Zheng L, Ismail K (2017) A generalized exponential link function to map a conflict indicator into severity index within safety continuum framework. Accid Anal Prev 102:23–30

    Article  PubMed  Google Scholar 

  42. Auquiert P, Gibaru O, Nyiri E (2007) On the cubicL1spline interpolant to the Heaviside function. Numerical Algorithms 46(7):321–332

    Article  Google Scholar 

  43. Ivanov VK (1977) The algebra generated by the Heaviside function and the delta-functions. Izv.vyssh.uchebn.zaved.mat 10:65–69

    Google Scholar 

  44. Udupa JK, Leblanc VR, Zhuge Y et al (2006) A framework for evaluating image segmentation algorithms. Comput Med Imaging Graph 30:75–87

    Article  PubMed  Google Scholar 

  45. Foster B, Bagci U, Mansoor A, Xu Z, Mollura DJ (2014) A review on segmentation of positron emission tomography images. Comput Biol Med 50:76–96

    Article  PubMed  Google Scholar 

  46. Steiger JH (2010) Structural model evaluation and modification an interval estimation approach. Multivar Behav Res 25(2):173–180

    Article  Google Scholar 

  47. Mayer MA, Hornegger J, Mardin CY, Tornow RP (2010) Retinal nerve fiber layer segmentation on FD-OCT scans of normal subjects and glaucoma patients. Biomedical Optics Express 1(5):1358–1383

    Article  PubMed  PubMed Central  Google Scholar 

  48. Vass J, Smid JR, Randall RB et al (2008) Avoidance of speckle noise in laser vibrometry by the use of kurtosis ratio: application to mechanical fault diagnostics. Mech Syst Signal Process 22(3):647–671

    Article  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundations of China (grant number 61801202) and Dalian Youth Science and Technology Star (grant number 2019RQ021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingling Fang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

In this paper, the proposed optimal energy functional is defined as

$$ {\phi}^{\ast }=\arg \underset{\phi }{\operatorname{inf}}\left\{E\left(\phi \right)\right\} $$
(12)

where

$$ {\displaystyle \begin{array}{l}E\left(\phi \right)={E}_b\left(\phi \right)+{E}_p\left(\phi \right)\\ {}={\int}_{\Omega}\left[\cos \left(\pi \cdot \boldsymbol{\upzeta} +1/2\pi \right)+1\right]d\Omega +{\int}_{\Omega}\sqrt{{\boldsymbol{\upzeta}}_{\mathbf{1}}\cdot {\boldsymbol{\upzeta}}_{\mathbf{2}}}d\Omega \end{array}} $$
(13)

Differentiating (3) and (4) with respect to ϕ, we can obtain

$$ {\displaystyle \begin{array}{l}\partial {\boldsymbol{\upzeta}}_1/\partial \phi =\delta \left(\phi \right)\cdot \int \wp \cdot H\left(\phi \right)d\Omega -\wp \cdot \delta \left(\phi \right)\cdot \int H\left(\phi \right)d\Omega /{\left(\int H\left(\phi \right)d\Omega \right)}^2\\ {}=\delta \left(\phi \right)\cdot \left({\boldsymbol{\upzeta}}_1-\wp \right)/\int H\left(\phi \right)d\Omega =\delta \left(\phi \right)\cdot \left({\boldsymbol{\upzeta}}_1-\wp \right)/{A}_{+}\end{array}} $$
(14)

1.1 and

$$ {\displaystyle \begin{array}{l}\partial {\boldsymbol{\upzeta}}_2/\partial \phi =-\delta \left(\phi \right)\cdot \int \wp \cdot \left(1-H\left(\phi \right)\right)d\Omega -\wp \cdot \delta \left(\phi \right)\cdot \int \left(1-H\left(\phi \right)\right)d\Omega /{\left(\int \left(1-H\left(\phi \right)\right)d\Omega \right)}^2\\ {}=-\delta \left(\phi \right)\cdot \left(\wp +{\boldsymbol{\upzeta}}_2\right)/\int \left(1-H\left(\phi \right)\right)d\Omega =-\delta \left(\phi \right)\cdot \left(\wp +{\boldsymbol{\upzeta}}_2\right)/{A}_{-}\end{array}} $$
(15)

Next, the concrete derivation process is as follows:

$$ \partial {E}_b\left(\phi \right)/\partial \phi =\pi \cdot \sin \left(\pi \cdot \boldsymbol{\upzeta} +1/2\pi \right)\cdot \partial \boldsymbol{\upzeta} /\partial \phi $$
(16)

1.2 and

$$ {\displaystyle \begin{array}{l}\partial {E}_p\left(\phi \right)/\partial \phi \\ {}=1/2{\left({\boldsymbol{\upzeta}}_1{\boldsymbol{\upzeta}}_2\right)}^{\hbox{-} 1/2}\cdot \left(\partial {\boldsymbol{\upzeta}}_1/\partial \phi \cdot {\boldsymbol{\upzeta}}_2+\partial {\boldsymbol{\upzeta}}_2/\partial \phi \cdot {\boldsymbol{\upzeta}}_1\right)\\ {}=1/2\left(\sqrt{{\boldsymbol{\upzeta}}_2/{\boldsymbol{\upzeta}}_1}\cdot \partial {\boldsymbol{\upzeta}}_1/\partial \phi +\sqrt{{\boldsymbol{\upzeta}}_1/{\mathrm{P}}_2}\cdot \partial {\boldsymbol{\upzeta}}_2/\partial \phi \right)\end{array}} $$
(17)

By substituting (8) and (9) into (7) and combining the corresponding terms, we can obtain

$$ {\displaystyle \begin{array}{l}\partial E\left(\phi \right)/\partial \phi =\partial {E}_b\left(\phi \right)/\partial \phi +\partial {E}_p\left(\phi \right)/\partial \phi \\ {}=-\pi \cdot \sin \left(\pi \cdot \boldsymbol{\upzeta} +1/2\pi \right)\cdot \partial \boldsymbol{\upzeta} /\partial \phi +\delta \left(\phi \right)\cdot V\end{array}} $$
(18)

where

$$ {\displaystyle \begin{array}{l}V=1/2\left(\sqrt{{\boldsymbol{\upzeta}}_2/{\boldsymbol{\upzeta}}_1}\cdot \left({\boldsymbol{\upzeta}}_1-\wp \right)/A+-\sqrt{{\boldsymbol{\upzeta}}_1/{\boldsymbol{\upzeta}}_2}\cdot \left(\wp +{\boldsymbol{\upzeta}}_2\right)/A-\right)\\ {}=1/2\sqrt{{\boldsymbol{\upzeta}}_2/{\boldsymbol{\upzeta}}_1}\cdot {\boldsymbol{\upzeta}}_1/A+-1/2\sqrt{{\boldsymbol{\upzeta}}_2/{\boldsymbol{\upzeta}}_1}\cdot \wp /A+-1/2\sqrt{{\boldsymbol{\upzeta}}_1/{\boldsymbol{\upzeta}}_2}\cdot \wp /A--1/2\sqrt{{\boldsymbol{\upzeta}}_1/{\boldsymbol{\upzeta}}_2}\cdot {\boldsymbol{\upzeta}}_2/A-\\ {}=1/2\sqrt{{\boldsymbol{\upzeta}}_1{\boldsymbol{\upzeta}}_2}\cdot 1/A+-1/2\sqrt{{\boldsymbol{\upzeta}}_1{\boldsymbol{\upzeta}}_2}\cdot 1/A--1/2\cdot \wp \left(1/A+\cdot \sqrt{{\boldsymbol{\upzeta}}_2/{\boldsymbol{\upzeta}}_1}+1/A-\cdot \sqrt{{\boldsymbol{\upzeta}}_1/{\boldsymbol{\upzeta}}_2}\right)\\ {}=1/2{E}_p\left(\phi \right)\cdot \left(1/A+-1/A-\right)-1/2\cdot \wp \left(1/A+\cdot \sqrt{{\boldsymbol{\upzeta}}_2/{\boldsymbol{\upzeta}}_1}+1/A-\cdot \sqrt{{\boldsymbol{\upzeta}}_1/{\boldsymbol{\upzeta}}_2}\right)\end{array}} $$
(19)

Appendix 2

Theorem 1.

The energy function (9) is uniformly bounded in the Sobolev space Wlp(Ω).

Let Ω denote the bounded open subset in space R, and Γ be the locally integrable function in Sobolev space Wlp(Ω) [35] (Sobolev space is such a vector space of functions that equipped with a series of lp-norms). Then, the energy function (9) is set as

$$ \Gamma =\sup \left\{\left.\int \left({E}_b\left(\phi \right)+{E}_p\left(\phi \right)\right)\cdot \nabla \phi d\Omega \right|\phi =\left({\phi}_1,{\phi}_2,\cdots, {\phi}_N\right)\in {W}^{01}{\left(\phi \right)}^N,{\left|\phi \right|}_{W^{\infty}\left(\Omega \right)}<1\right\} $$
(20)

where dΩ is the Lebesgue measure Ω = sup {Ω+, Ω}, and

$$ \nabla \phi =\sum \limits_{i=1}^N\partial {\phi}_i/\partial {x}_i. $$
(21)

Then, we can get that Γ ∈ W(Ω), ∇Γ ∈ W1(Ω), i.e.,

$$ -\int \left({E}_b\left(\phi \right)+{E}_p\left(\phi \right)\right)\cdot \nabla \phi d\Omega =\int \left(\nabla \left({E}_b\left(\phi \right)+{E}_p\left(\phi \right)\right)\right)\cdot \phi d\Omega $$
(22)

and the bounded variation space BV(Ω) is defined as

$$ BV\left(\Omega \right)=\left\{\left.\phi \right|\phi \in {W}^1\left(\Omega \right)\kern0.4em or\kern0.4em \Gamma \in {L}^1\left(\Omega \right)\right\}. $$
(23)

By the characteristics of the BV, one can get that if ϕ ∈ BV(Ω), then

$$ \Gamma \left({E}_b,{E}_p\right)={\int}_{-\infty}^{+\infty }{W}^1\left(\partial {\Omega}_{\sigma}\right) d\sigma . $$
(24)

Here, Ωσ is the boundary, and W1(Ωσ) denotes the length of Ωσ.Therefore, one can get that the energy function (9) is uniformly bounded in the Sobolev space Wlp(Ω).

1.1 Appendix 3

Theorem 2.

The convergence value is the minimum in the energy function (9).

Proof. From Theorem 1, one can get that there exists a minimal sequence {ϕn} ∈ Wlp(Ω), n ∈ Z. By the property of Sobolev Space Wlp(Ω), we can get

$$ \underset{n\to \infty }{\lim }E\left({\phi}_n\right)=\underset{w\to {H}^2(G)}{\operatorname{inf}}E\left(\phi \right) $$
(25)

Here, there exists a convergent subsequence ϕn that converges to ϕ, that is ϕn → ϕ. By the mandatory of function δ(ϕ) ⋅ V and the characteristics of a trigonometric function cos, we can get that ϕn is convergent to ϕ. By Fatou’s lemma, we can get \( \phi \le \underset{n\to \infty }{\lim}\operatorname{inf}{\phi}_n \), and ϕ convergences, and there exists a minimum. In conclusion, the energy function (9) is uniformly bounded, convergences, and there exists a minimum.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, L., Zhang, L. & Yao, Y. Integrating a learned probabilistic model with energy functional for ultrasound image segmentation. Med Biol Eng Comput 59, 1917–1931 (2021). https://doi.org/10.1007/s11517-021-02411-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-021-02411-0

Keywords

Navigation