Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Effect of number of motor units and muscle fibre type on surface electromyogram

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Reduction in number of motor units (nMU) and fast fibre ratio (FFR) is associated with disease or atrophy when this is rapid. There is a need to study the effect of nMU and FFR to analyse the association with ageing and disease. This study has developed a mathematical model to investigate the relationship between nMU and FFR on surface electromyogram (sEMG) of the biceps muscles. The model has been validated by comparing the simulation outcomes with experiments comparing the sEMG of physically active younger and older cohort. The results show that there is statistically significant difference between the two groups, and the simulation studies closely model the experimental results. This model can be applied to identify the cause of muscle weakness among the elderly due to factors such as muscle dystrophy or preferential loss of type F muscle fibres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Arjunan SP, Kumar DK (2013) Age-associated changes in muscle activity during isometric contraction. Muscle Nerve 47(4):545–549

    Article  PubMed  Google Scholar 

  2. Boedine SC (2013) Disuse-induced muscle wasting. Int J Biochem Cell Biol 45:2200–2208

    Article  Google Scholar 

  3. Breit S, Spieker S, Schultz JB, Gasser T (2008) Electromyography based model can distinguish early essential from parkinson tremor. Nat Rev Neurol 255:103–111

    CAS  Google Scholar 

  4. Brown WF, Strong MJ, Snow R (1988) Methods for estimating numbers of motor units in biceps-brachialis muscles and losses of motor units with aging. Muscle Nerve 11:423–432

    Article  CAS  PubMed  Google Scholar 

  5. Ciciliot S, Rossi AC, Dyar KA, Blaauw B, Schiaffino S (2013) Muscle type and fiber type specificity in muscle wasting. Int J Biochem Cell Biol 45:2200–2208

    Article  Google Scholar 

  6. Deschenes MR (2004) Effects of aging on muscle fibre type and size. Sports Med 34(12):809–824

    Article  PubMed  Google Scholar 

  7. Dideriksen JL, Enoka RM, Farina D (2011) A model of surface electromyogram in pathological tremor. IEEE Trans Biomed Eng 58(8):2178–2184

    Article  Google Scholar 

  8. Doherty TJ, Vandervoort AA, Brown WF (1993) Effects of ageing on the motor unit: a brief review. Can J Appl Physiol 18(4):331–358

    Article  CAS  PubMed  Google Scholar 

  9. Farina D, Fosci M, Merletti R (2002) Motor unit recruitment strategies investigated by surface EMG variables. J Appl Physiol 92(1):235–247

    Article  PubMed  Google Scholar 

  10. Fuglevand AJ, Winter DA, Patla AE (1993) Models of recruitment and rate coding organization in motor-unit pools. J Neurophysiol 70(6):2470–2488

    CAS  PubMed  Google Scholar 

  11. Gydikov A, Kosarov D (1974) Some features of different motor units in human biceps brachii. Pflügers Arch 347(1):75–88

    Article  CAS  PubMed  Google Scholar 

  12. Klein CS, Marsh GD, Petrella RJ, Rice CL (2003) Muscle fiber number in biceps brachii muscle of young and old men. Muscle Nerve 28:62–68

    Article  PubMed  Google Scholar 

  13. Krogh-Lund C, Jørgensen K (1992) Modification of myo-electric power spectrum in fatigue from 15 % maximal voluntary contraction of human elbow flexor muscles, to limit of endurance: reflection of conduction velocity variation and/or centrally mediated mechanisms? Eur J Appl Physiol 64:359–370

    Article  CAS  Google Scholar 

  14. Kukulka CG, Clamann HP (1981) Comparison of the recruitment and discharge properties of motor units in human brachial biceps and adductor pollicis during isometric contractions. Brain Res 219(1):45–55

    Article  CAS  PubMed  Google Scholar 

  15. Lowery MM, Vaughan CL, Nolan PJ, O’Malley MJ (2000) Spectral compression of the electromyographic signal due to decreasing muscle fiber conduction velocity. IEEE Trans Rehabil Eng 8(3):353–361

    Article  CAS  PubMed  Google Scholar 

  16. Manini TM, Clark BC (2012) Dynapenia and aging: an update. J Gerontol Ser A: Biol Sci Med Sci 67(1):28–40

    Article  Google Scholar 

  17. Merletti R, Lo Conte L, Avignone E, Guglielminotti P (1999) Modeling of surface myoelectric signals. I. Model implementation. IEEE Trans Biomed Eng 46(7):810–820

    Article  CAS  PubMed  Google Scholar 

  18. Navallas J, Malanda A, Gila L, Rodríguez J, Rodríguez I (2010) A muscle architecture model offering control over motor unit fiber density distributions. Med Biol Eng Comput 48(9):875–886

    Article  PubMed  Google Scholar 

  19. Parsaei H, Nezhad FJ, Stashuk DW, Hamilton-Wright A (2011) Validating motor unit firing patterns extracted by EMG signal decomposition. Med Biol Eng Comput 49(6):649–658

    Article  PubMed  Google Scholar 

  20. Rie M, Terao J (2013) Role of dietary flavonoids in oxidative stress and prevention of muscle atrophy. J Phys Fitness Sports Med 2(4):385–392

    Article  Google Scholar 

  21. Roeleveld K, Blok J, Stegeman D, Van Oosterom A (1997) Volume conduction models for surface EMG; confrontation with measurements. J Electromyogr Kinesiol 7(4):221–232

    Article  PubMed  Google Scholar 

  22. SENIAM (2009) Surface electromyography for the non invasive assessment of muscles. Accessed from: http://seniam.org/

  23. van Kan GA (2009) Epidemiology and consequences of sarcopenia. J Nutr Health Aging 13(8):708–712

    Article  Google Scholar 

  24. van Veen BK, Wolters H, Wallinga W, Rutten WL, Boom HB (2006) The bioelectrical source in computing single muscle fiber action potentials. Biophys J 64(5):1492–1498

    Article  Google Scholar 

  25. Vandervoort AA (2001) Aging of the human neuromuscular system. Muscle Nerve 25(1):17–25

    Article  Google Scholar 

  26. Wheeler KA, Kumar DK, Shimada H (2010) An accurate bicep muscle model with sEMG and muscle force outputs. J Med Biol Eng 30(6):393–398

    Article  Google Scholar 

  27. Wheeler KA, Shimada H, Kumar DK, Arjunan SP (2010) A sEMG model with experimentally based simulation parameters. In: Annual international conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp 4258–4261, 31 Aug–4 Sep

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sridhar Poosapadi Arjunan.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poosapadi Arjunan, S., Kumar, D.K., Wheeler, K. et al. Effect of number of motor units and muscle fibre type on surface electromyogram. Med Biol Eng Comput 54, 575–582 (2016). https://doi.org/10.1007/s11517-015-1344-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-015-1344-1

Keywords

Navigation