Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Modelling the dynamics of expiratory airflow to describe chronic obstructive pulmonary disease

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Chronic obstructive pulmonary disease (COPD) is characterized by expiratory airflow limitation, but current diagnostic criteria only consider flow till the first second and are therefore strongly debated. We aimed to develop a data-based individualized model for flow decline and to explore the relationship between model parameters and COPD presence. A second-order transfer function model was chosen and the model parameters (namely the two poles and the steady state gain (SSG)) from 474 individuals were correlated with COPD presence. The capability of the model to predict disease presence was explored using 5 machine learning classifiers and tenfold cross-validation. Median (95 % CI) poles in subjects without disease were 0.9868 (0.9858–0.9878) and 0.9333 (0.9256–0.9395), compared with 0.9929 (0.9925–0.9933) and 0.9082 (0.9004–0.9140) in subjects with COPD (p < 0.001 for both poles). A significant difference was also found when analysing the SSG, being lower in COPD group 3.8 (3.5–4.2) compared with 8.2 (7.8–8.7) in subjects without (p < 0.0001). A combination of all three parameters in a support vector machines corresponded with highest sensitivity of 85 %, specificity of 98.1 % and accuracy of 88.2 % to COPD diagnosis. The forced expiration of COPD can be modelled by a second-order system which parameters identify most COPD cases. Our approach offers an additional tool in case FEV1/FVC ratio-based diagnosis is doubted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Altman DG, Bland JM (1994) Statistics notes: diagnostic tests 2: predictive values. BMJ 309:102.1

  2. Amalakuhan B, Kiljanek L, Parvathaneni A, Hester M, Cheriyath P, Fischman D (2012) A prediction model for COPD readmissions: catching up, catching our breath, and improving a national problem. J Community Hosp Intern Med Perspect 2(1)

  3. Amaral JL, Lopes AJ, Jansen JM, Faria AC, Melo PL (2012) Machine learning algorithms and forced oscillation measurements applied to the automatic identification of chronic obstructive pulmonary disease. Comput Methods Programs Biomed 105(3):183–193

    Article  PubMed  Google Scholar 

  4. Bass H (1973) The flow volume loop: normal standards and abnormalities in chronic obstructive pulmonary disease. Chest 63(2):171–176

    Article  CAS  PubMed  Google Scholar 

  5. Bodduluri S, Newell JD Jr, Hoffman EA, Reinhardt JM (2013) Registration-based lung mechanical analysis of chronic obstructive pulmonary disease (COPD) using a supervised machine learning framework. Acad Radiol 20(5):527–536

    Article  PubMed Central  PubMed  Google Scholar 

  6. Brown JM, Nahorski ZT, Woodcock JP, Morris SJ (1978) Transfer-function modelling of arteries. Med Biol Eng Comput 16(2):161–164

    Article  CAS  PubMed  Google Scholar 

  7. Daniel BL, Daniel TM (1993) Graphic representation of numerically calculated predictive values: an easily comprehended method of evaluating diagnostic tests. Med Decis Making 13(4):355–358

    Article  CAS  PubMed  Google Scholar 

  8. Decramer M, Janssens W, Miravitlles M (2012) Chronic obstructive pulmonary disease. Lancet 379(9823):1341–1351

    Article  PubMed  Google Scholar 

  9. DeMeo DL, Carey VJ, Chapman HA, Reilly JJ, Ginns LC, Speizer FE, Weiss ST, Silverman EK (2004) Familial aggregation of FEF(25-75) and FEF(25-75)/FVC in families with severe, early onset COPD. Thorax 59(5):396–400

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Fens N, Zwinderman AH, van der Schee MP, de Nijs SB, Dijkers E, Roldaan AC, Cheung D, Bel EH, Sterk PJ (2009) Exhaled breath profiling enables discrimination of chronic obstructive pulmonary disease and asthma. Am J Respir Crit Care Med 180(11):1076–1082

    Article  CAS  PubMed  Google Scholar 

  11. Garcia-Rio F, Soriano JB, Miravitlles M, Munoz L, Duran-Tauleria E, Sanchez G, Sobradillo V, Ancochea J (2011) Overdiagnosing subjects with COPD using the 0.7 fixed ratio: correlation with a poor health-related quality of life. Chest 139(5):1072–1080

    Article  PubMed  Google Scholar 

  12. Guder G, Brenner S, Angermann CE, Ertl G, Held M, Sachs AP, Lammers JW, Zanen P, Hoes AW, Stork S, Rutten FH (2012) GOLD or lower limit of normal definition? A comparison with expert-based diagnosis of chronic obstructive pulmonary disease in a prospective cohort-study. Respir Res 13(1):13

    Article  PubMed Central  PubMed  Google Scholar 

  13. Hastie T, Tibshirani R, Friendman J (2009) The elements of statistical learning: data mining, inference, and prediction, 2 edn. Springer

  14. Haykin S (1994) Neural networks a comprehensive foundation. Macmillan College Publishing Company, Englewood Cliffs

    Google Scholar 

  15. Healy F, Wilson AF, Fairshter RD (1984) Physiologic correlates of airway collapse in chronic airflow obstruction. Chest 85(4):476–481

    Article  CAS  PubMed  Google Scholar 

  16. Himes BE, Dai Y, Kohane IS, Weiss ST, Ramoni MF (2009) Prediction of chronic obstructive pulmonary disease (COPD) in asthma patients using electronic medical records. J Am Med Inform Assoc 16(3):371–379

    Article  PubMed Central  PubMed  Google Scholar 

  17. Jayamanne DS, Epstein H, Goldring RM (1980) Flow-volume curve contour in COPD: correlation with pulmonary mechanics. Chest 77(6):749–757

    Article  CAS  PubMed  Google Scholar 

  18. Justice AC, Covinsky KE, Berlin JA (1999) Assessing the generalizability of prognostic information. Ann Intern Med 130(6):515–524

    Article  CAS  PubMed  Google Scholar 

  19. Kim KH, Kim SS, Kim SJ (2006) Improvement of spike train decoder under spike detection and classification errors using support vector machine. Med Biol Eng Comput 44(1–2):124–130

    Article  PubMed  Google Scholar 

  20. Kohavi R (1995) A study of cross-validation and bootstrap for accuracy estimation and model selection. Morgan Kaufmann

  21. Koulouris NG, Hardavella G (2011) Physiological techniques for detecting expiratory flow limitation during tidal breathing. Eur Respir Rev 20(121):147–155

    Article  CAS  PubMed  Google Scholar 

  22. Lambrechts D, Buysschaert I, Zanen P, Coolen J, Lays N, Cuppens H, Groen HJ, Dewever W, van Klaveren RJ, Verschakelen J, Wijmenga C, Postma DS, Decramer M, Janssens W (2010) The 15q24/25 susceptibility variant for lung cancer and chronic obstructive pulmonary disease is associated with emphysema. Am J Respir Crit Care Med 181(5):486–493

    Article  PubMed  Google Scholar 

  23. Ljung L (1987) System Identification: Theory for the User. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  24. Mannino DM, Buist AS (2007) Global burden of COPD: risk factors, prevalence, and future trends. Lancet 370(9589):765–773

    Article  PubMed  Google Scholar 

  25. Mathers CD, Loncar D (2006) Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med 3(11):e442

    Article  PubMed Central  PubMed  Google Scholar 

  26. Miller MR, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A, Crapo R, Enright P, van der Grinten CP, Gustafsson P, Jensen R, Johnson DC, MacIntyre N, McKay R, Navajas D, Pedersen OF, Pellegrino R, Viegi G, Wanger J (2005) Standardisation of spirometry. Eur Respir J 26(2):319–338

    Article  CAS  PubMed  Google Scholar 

  27. Murray CJ, Lopez AD (1997) Alternative projections of mortality and disability by cause 1990–2020: global Burden of Disease Study. Lancet 349(9064):1498–1504

    Article  CAS  PubMed  Google Scholar 

  28. Ora J, Calzetta L, Pezzuto G, Senis L, Paone G, Mari A, Portalone S, Rogliani P, Puxeddu E, Saltini C (2013) A 6MWT index to predict O2 flow correcting exercise induced SpO2 desaturation in ILD. Respir Med 107(12):2014–2021

    Article  PubMed  Google Scholar 

  29. Papandrinopoulou D, Tzouda V, Tsoukalas G (2012) Lung compliance and chronic obstructive pulmonary disease. Pulm Med 2012:542769

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Quanjer PH, Tammeling GJ, Cotes JE, Pedersen OF, Peslin R, Yernault JC (1994) Lung volumes and forced ventilatory flows. Work group on standardization of respiratory function tests. European Community for Coal and Steel. Official position of the European Respiratory Society. Rev Mal Respir 11(Suppl 3):5–40

    PubMed  Google Scholar 

  31. Rabe KF, Hurd S, Anzueto A, Barnes PJ, Buist SA, Calverley P, Fukuchi Y, Jenkins C, Rodriguez-Roisin R, van Wheel C, Zielinski J (2007) Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med 176(6):532–555

    Article  PubMed  Google Scholar 

  32. Reddy DC, Rao KS, Murty KJ (1984) Waveform analysis for the detection of airways obstruction in man. Med Biol Eng Comput 22(6):481–485

    Article  CAS  PubMed  Google Scholar 

  33. Sahin D, Ubeyli ED, Ilbay G, Sahin M, Yasar AB (2010) Diagnosis of airway obstruction or restrictive spirometric patterns by multiclass support vector machines. J Med Syst 34(5):967–973

    Article  PubMed  Google Scholar 

  34. Sorensen L, Nielsen M, Lo P, Ashraf H, Pedersen JH, de Bruijne M (2012) Texture-based analysis of COPD: a data-driven approach. IEEE Trans Med Imaging 31(1):70–78

    Article  PubMed  Google Scholar 

  35. Steltner H, Vogel M, Sorichter S, Matthys H, Guttmann J, Timmer J (2001) Analysis of forced expired volume signals using multi-exponential functions. Med Biol Eng Comput 39(2):190–194

    Article  CAS  PubMed  Google Scholar 

  36. Steyerberg EW, Harrell FE Jr, Borsboom GJ, Eijkemans MJ, Vergouwe Y, Habbema JD (2001) Internal validation of predictive models: efficiency of some procedures for logistic regression analysis. J Clin Epidemiol 54(8):774–781

    Article  CAS  PubMed  Google Scholar 

  37. Su SW, Celler BG, Savkin AV, Nguyen HT, Cheng TM, Guo Y, Wang L (2009) Transient and steady state estimation of human oxygen uptake based on noninvasive portable sensor measurements. Med Biol Eng Comput 47(10):1111–1117

    Article  PubMed  Google Scholar 

  38. Suykens JAK, Van Gestel T, De Brabanter J, DeMoor B, Vandewalle J (2002) Least squares support vector machines. World Scientific Pub. Co., Singapore

    Book  Google Scholar 

  39. Taylor CJ, Pedregal DJ, Young PC, Tych W (2007) Environmental time series analysis and forecasting with the Captain toolbox. Environ Model Softw 22(6):797–814

    Article  Google Scholar 

  40. Topalovic M, Exadaktylos V, Peeters A, Coolen J, Dewever W, Hemeryck M, Slagmolen P, Janssens K, Berckmans D, Decramer M, Janssens W (2013) Computer quantification of airway collapse on forced expiration to predict the presence of emphysema. Respir Res 14:131

    Article  PubMed Central  PubMed  Google Scholar 

  41. van der Heijden F, Duin R, de Ridder D, Tax DMJ (2004) Classification, parameter estimation and state estimation: an engineering approach using MATLAB. Wiley, Chichester

    Book  Google Scholar 

  42. Veezhinathan M, Ramakrishnan S (2007) Detection of obstructive respiratory abnormality using flow-volume spirometry and radial basis function neural networks. J Med Syst 31(6):461–465

    Article  PubMed  Google Scholar 

  43. Wessel N, Malberg H, Bauernschmitt R, Schirdewan A, Kurths J (2006) Nonlinear additive autoregressive model-based analysis of short-term heart rate variability. Med Biol Eng Comput 44(4):321–330

    Article  PubMed  Google Scholar 

  44. WHO (2012) World health statistics 2008. http://www.who.int/whosis/whostat/EN_WHS08_Full.pdf

  45. Witte H, Rother M (1989) Better quantification of neonatal respiratory sinus arrhythmia–progress by modelling and model-related physiological examinations. Med Biol Eng Comput 27(3):298–306

    Article  CAS  PubMed  Google Scholar 

  46. Witten IH, Frank E, Hall MA (2011) Data mining: practical machine learning tools and techniques, 3rd edn (The Morgan Kaufmann Series in Data Management Systems). Morgan Kaufmann

  47. Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1(1):67–82

    Article  Google Scholar 

  48. Yom-Tov E, Inbar GF (2003) Detection of movement-related potentials from the electro-encephalogram for possible use in a brain-computer interface. Med Biol Eng Comput 41(1):85–93

    Article  CAS  PubMed  Google Scholar 

  49. Young PC (1984) Recursive estimation and time-series analysis. Springer, Berlin

    Book  Google Scholar 

  50. Young P (1981) Parameter-estimation for continuous-time models: a survey. Automatica 17(1):23–39

    Article  Google Scholar 

Download references

Acknowledgments

The current work is supported by an Astra Zeneca Chair. WJ is a senior clinical investigator of the Flemish Research Funds (FWO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wim Janssens.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Topalovic, M., Exadaktylos, V., Decramer, M. et al. Modelling the dynamics of expiratory airflow to describe chronic obstructive pulmonary disease. Med Biol Eng Comput 52, 997–1006 (2014). https://doi.org/10.1007/s11517-014-1202-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-014-1202-6

Keywords

Navigation