Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Patient specific fluid–structure ventricular modelling for integrated cardiac care

  • Special Issue - Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Cardiac diseases represent one of the primary causes of mortality and result in a substantial decrease in quality of life. Optimal surgical planning and long-term treatment are crucial for a successful and cost-effective patient care. Recently developed state-of-the-art imaging techniques supply a wealth of detailed data to support diagnosis. This provides the foundations for a novel approach to clinical planning based on personalisation, which can lead to more tailored treatment plans when compared to strategies based on standard population metrics. The goal of this study is to develop and apply a methodology for creating personalised ventricular models of blood and tissue mechanics to assess patient-specific metrics. Fluid–structure interaction simulations are performed to analyse the diastolic function in hypoplastic left heart patients, who underwent the first stage of a three-step surgical palliation and whose condition must be accurately evaluated to plan further intervention. The kinetic energy changes generated by the blood propagation in early diastole are found to reflect the intraventricular pressure gradient, giving indications on the filling efficiency. This suggests good agreement between the 3D model and the Euler equation, which provides a simplified relationship between pressure and kinetic energy and could, therefore, be applied in the clinical context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

HLHS:

Hypoplastic left heart syndrome

LV, RV:

Left ventricle/right ventricle

TDI:

Tissue Doppler imaging

MRI:

Magnetic resonance imaging

Ωf,s :

Fluid and solid domain

Λf,s :

Fluid and solid reference domain

Γ Df.s :

Fluid and solid Dirichlet boundary

Γ Nf.s :

Fluid and solid Neumann boundary

ρ f,s :

Fluid and solid density

J f,s :

Fluid and solid Jacobian

σ f,s :

Fluid and solid stress tensor

t f,s :

Fluid and solid traction

σ iso :

Isotropic stress tensor

p f,s :

Fluid and solid pressure

v :

Fluid velocity

w :

Domain velocity

u :

Solid displacement

x :

Physical coordinate system

η :

Reference coordinate system

F :

Deformation gradient tensor

T :

Second Poila–Kirchhoff tensor

Q :

Orthonormal rotation tensor

E F :

Green strain tensor

α ij :

Costa Law coefficients

W:

Strain energy function

Ψ:

Density function

r(s):

Trajectory along streamline s

p base v base :

Fluid velocity/pressure in the base region

p apex v apex :

Fluid velocity/pressure in the apical region

M :

Momentum change along a streamline

E k :

Kinetic energy

References

  1. Barbier P, Grimaldi A, Alimento M, Berna G, Guazzi MD (2002) Echocardiographic determinants of early mitral flow propagation velocity. Am J Cardiol 90:613–619

    Article  PubMed  Google Scholar 

  2. Barron DJ, Kilby MD, Wright JGC, Jones TJ, Brawn WJ (2009) Hypoplastic left heart syndrome. Lancet 347:551–564

    Article  Google Scholar 

  3. Bartram U, Grünenfelder J, Van Praagh R (1997) Causes of death after the modified Norwood procedure: a study of 122 postmortem cases. Ann Thorac Surg 64:1759–1802

    Article  Google Scholar 

  4. Buakhamsri A, Popovic ZB, Lin J, Lim P, Greenberg NL, Borowski AG, Tang WH, Klein AL, Lever HM, Desai MY, Thomas JD (2009) Impact of left ventricular volume/mass ratio on diastolic function. Eur Heart J 30:1213–1221

    Article  PubMed  Google Scholar 

  5. Cooke J, Hertzberg J, Boardman M, Shandas R (2004) Characterizing vortex ring behaviour during ventricular filling with Doppler echocardiography: an in vitro study. Ann Biomed Eng 32:245–256

    Article  PubMed  Google Scholar 

  6. Costa K, Holmes J, McCulloch A (2001) Modelling cardiac mechanical properties in three dimensions. Phil Trans R Soc Lond A 359:1233–1250

    Article  Google Scholar 

  7. Davlouros PA, Niwa K, Webb G, Gatzoulis MA (2006) The right ventricle in congenital heart disease. Heart 92:i27–i38

    Article  PubMed  Google Scholar 

  8. De Vecchi A, Nordsletten DA, Remme EW, Bellsham-Revell H, Greil G, Simpson JM, Razavi R, Smith NP (2012) Inflow typology and ventricular geometry determine efficiency of filling in the hypoplastic left heart. Ann Thorac Surg 94:1562–1569

    Article  PubMed  Google Scholar 

  9. Dillman JR, Dorfman AL, Attili AK, Agarwal PP, Bell A, Mueller GC et al (2010) Cardiovascular magnetic resonance imaging of hypoplastic left heart syndrome in children. Pediatr Radiol 40:261–274

    Article  PubMed  Google Scholar 

  10. Firstenberg MS, Smedira NG, Greenberg NL, Prior DL, McCarthy PM, Garcia MJ, Thomas JD (2001) Relationship between early diastolic intraventricular pressure gradients, an index of elastic recoil, and improvements in systolic and diastolic function. Circulation 104:330–335

    Article  Google Scholar 

  11. Gharib M, Rambod E, Shariff K (1998) A universal time scale for vortex ring formation. J Fluid Mech 360:121–140

    Article  CAS  Google Scholar 

  12. Greenbaum RA, Ho SY, Gibson DG, Becker AE, Anderson RH (1981) Left ventricular fibre architecture in man. Brit Heart J 45:248–263

    Article  PubMed  CAS  Google Scholar 

  13. Greenberg NL, Vandervoort PM, Firstenberg MS, Garcia MJ, Thomas JD (2001) Estimation of diastolic intraventricular pressure gradients by Doppler M-mode echocardiography. Am J Physiol Heart C 280:H2507–H2515

    CAS  Google Scholar 

  14. Iannettoni MD, Bove EL, Mosca RS, Lupinetti FM, Dorostkar PC, Ludomirsky A, Crowley DC, Kulik TJ, Rosenthal A (1992) Improving results with first-stage palliation for hypoplastic left heart syndrome. J Thorac Cardiovasc Surg 107:934–940

    Google Scholar 

  15. Jacobs ML, Rychik J, Rome JJ, Apostolopoulou S, Pizarro C, Murphy JD, Norwood WI (1996) Early reduction of the volume work of the single ventricle: the hemi-Fontan operation. Ann Thorac Surg 62:456–462

    Article  PubMed  CAS  Google Scholar 

  16. Jacobs JP, O’Brien SM, Chai PJ, Morell VO, Lindberg HL, Quintessenza JA (2008) Management of 239 patients with hypoplastic left heart syndrome and related malformations from 1993 to 2007. Ann Thorac Surg 85(5):1691–1697

    Article  PubMed  Google Scholar 

  17. Kheravadar A, Gharib M (2007) Influence of ventricular pressure drop on mitral annulus dynamics through the process of vortex ring formation. Ann Biomed Eng 35:2050–2064

    Article  Google Scholar 

  18. Kilner PJ, Yang GZ, Wilkes AJ, Mohladdin RH, Firmin DN, Yacoub MH (2000) Asymmetric redirection of flow through the heart. Nature 404:759–761

    Article  PubMed  CAS  Google Scholar 

  19. Lamata P, Niederer SA, Barber D, Nordsletten DA, Lee J, Hose R, Smith NP (2010) Personalization of cubic hermite meshes for efficient biomechanical simulations. Med Image Comput Comput Assist Interv 13:380–387

    PubMed  Google Scholar 

  20. Meliones JN, Snider AR, Bove EL, Rosenthal A, Rosen DA (1990) Longitudinal results after first-stage palliation for hypoplastic left heart syndrome. Circulation 82(5):151–156

    Google Scholar 

  21. Nagueh SF, Appleton CP, Gillebert TC, Marino PN, Oh JK, Smiseth OA et al (2009) Recommendations for the evaluation of left ventricular diastolic function by echocardiography. Eur J Echocardiogr 10:165–193

    Article  PubMed  Google Scholar 

  22. Nielsen P, LeGrice IJ, Smaill BH (1991) Mathematical model of geometry and fibrous structure of the heart. Am J Physiol (Heart Circ Physiol) 260(29):H1365–H1378

    CAS  Google Scholar 

  23. Nordsletten DA, Kay D, Smith NP (2010) A non-conforming monolithic finite element method for problems of coupled mechanics. J Comput Phys 229:7571–7593

    Article  CAS  Google Scholar 

  24. Nordsletten DA, McCormick M, Kilner PJ, Hunter PJ, Kay D, Smith NP (2010) Fluid-solid coupling for the investigation of diastolic and systolic human left ventricular function. Int J Numer Method Biomed Eng 27:1017–1039

    Article  Google Scholar 

  25. Nordsletten DA, Smith NP, Kay D (2010) A preconditioner for the finite element approximation to the ALE Navier-Stokes equations. SIAM J Sci Comput 32:521–543

    Article  Google Scholar 

  26. Norwood WI, Lang P, Hansen DD (1983) Physiologic repair of aortic atresia-hypoplastic left heart syndrome. N Engl J Med 308:23–26

    Article  PubMed  CAS  Google Scholar 

  27. Ommen SR, Nishimura RA (2003) A clinical approach to the assessment of left ventricular diastolic function by doppler echocardiography: update 2003. Heart 89:iii18–iii23

    PubMed  Google Scholar 

  28. Pedrizzetti G, Domenichini F (2005) Three-dimensional filling flow into a model of left ventricle. J Fluid Mech 539:179–198

    Article  Google Scholar 

  29. Rentzsch A, Abd El Rahman MY, Hui W, Helweg A, Ewert P, Gutberlet M et al (2005) Assessment of myocardial function of the systemic right ventricle in patients with d-transposition of the great arteries after atrial switch operation by tissue Doppler echocardiography. Z Kardiol 94(8):524–531

    Article  PubMed  CAS  Google Scholar 

  30. Steine K, Stugaard M, Smiseth OA (1999) Mechanisms of retarded apical filling in acute ischemic left ventricular failure. Circulation 99:2048–2054

    Article  PubMed  CAS  Google Scholar 

  31. Stugaard M, Rise C, Ihnlen H, Smiseth OA (1994) Intracavitary filling pattern in the failing left ventricle assessed by colour m-mode echocardiography. J Am Coll Cardiol 24:663–670

    Article  PubMed  CAS  Google Scholar 

  32. Thomas JD, Weyman AE (1992) Numerical modeling of ventricular filling. Ann Biomed Eng 20:19–39

    Article  PubMed  CAS  Google Scholar 

  33. Vierendeels JA, Riemslagh K, Dick E, Verdonck PR (2000) Computer simulation of intraventricular flow and pressure gradients during diastole. J Biomech Eng 122:667–674

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. P. Smith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Vecchi, A., Nordsletten, D.A., Razavi, R. et al. Patient specific fluid–structure ventricular modelling for integrated cardiac care. Med Biol Eng Comput 51, 1261–1270 (2013). https://doi.org/10.1007/s11517-012-1030-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-012-1030-5

Keywords

Navigation