Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

On the EEG/MEG forward problem solution for distributed cortical sources

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

In studies of EEG/MEG problems involving cortical sources, the cortex may be modeled by a 2-D manifold inside the brain. In such cases the primary or impressed current density over this manifold is usually approximated by a set of dipolar sources located at the vertices of the cortical surface tessellation. In this study, we analyze the different errors induced by this approximation on the EEG/MEG forward problem. Our results show that in order to obtain more accurate solutions of the forward problems with the multiple dipoles approximation, the moments of the dipoles should be weighted by the area of the surrounding triangles, or using an alternative approximation of the primary current as a constant or linearly varying current density over plane triangular elements of the cortical surface tessellation. This should be taken into account when computing the lead field matrix for solving the EEG/MEG inverse problem in brain imaging methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dale AM, Sereno MI (1993) Improved localizadon of cortical activity by combining EEG and MEG with MRI cortical surface reconstruction: a linear approach. J Cogn Neurosci 5(2):162–176. doi:10.1162/jocn.1993.5.2.162

    Article  Google Scholar 

  2. Davatzikos C, Bryan N (1996) Using a deformable surface model to obtain a shape representation of the cortex. IEEE Trans Med Imag 15(6):785–795. doi:10.1109/42.544496

    Article  Google Scholar 

  3. de Munck JC (1992) A linear discretization of the volume conductor boundary integral equation using analytically integrated elements. IEEE Trans Biomed Eng 39(9):986–990

    Article  Google Scholar 

  4. de Munck JC, Peters MJ (1993) A fast method to compute surface potentials in the multisphere model. IEEE Trans Biomed Eng 40(11):1166–1174

    Article  Google Scholar 

  5. de Munck JC, Vijn PCM, Lopes da Silva FH (1992) A random dipole model for spontaneous brain activity. IEEE Trans Biomed Eng 39(8):791–804

    Article  Google Scholar 

  6. Ferguson AS, Zhang X, Stroink G (1994) A complete linear discretization for calculating the magnetic field using the boundary element method. IEEE Trans Biomed Eng 41(5):455–460

    Article  Google Scholar 

  7. Friston K, Ashburner J, Kiebel S, Nichols T, Penny W (eds) (2007) Statistical parametric mapping: the analysis of functional brain images. Academic Press, New York

  8. Geselowitz DB (1967) On bioelectric potentials in an inhomogenous volume conductor. Biophys J 7:1–11

    Article  Google Scholar 

  9. Geselowitz DB (1970) On the magnetic field generated outside an inhomogeneous volume conductor by internal current sources. IEEE Trans Magn MAG-6:346–347

    Google Scholar 

  10. Hämäläinen MS, Ilmoniemi RJ (1994) Interpreting magnetic fields of the brain: minimum norm estimates. Med Biol Eng Comput 32:35–42

    Article  Google Scholar 

  11. Hämäläinen MS, Sarvas J (1989) Realistic conductivity geometry model of the human head for interpretation of neuromagnetic data. IEEE Trans Biomed Eng 36(2):165–171

    Article  Google Scholar 

  12. Hörmander L (1990) The analysis of linear partial differential operators I: distribution theory and fourier analysis, 2nd edn. No. 256. In: Grundlehren der Mathematischen Wissenschaften, Springer, Berlin

  13. Im CH, Gururajan A, Zhang N, Chenb W, He B (2007) Spatial resolution of EEG cortical source imaging revealed by localization of retinotopic organization in human primary visual cortex. J Neurosci Methods 16:142–154

    Article  Google Scholar 

  14. Jasper H (1958) The ten twenty electrode system of the international federation. Electroencephalogr Clin Neurophysiol 10:371–375

    Google Scholar 

  15. Jerbi K, Baillet S, Mosher JC, Nolte G, Garnero L, Leahy RM (2004) Localization of realistic cortical activity in MEG using current multipoles. NeuroImage 22(2):779–793

    Article  Google Scholar 

  16. Lin FH, Belliveau JW, Dale AM, Hämäläinen MS (2006) Distributed current estimates using cortical orientation constraints. Human Brain Mapp 27(1):1–13

    Article  MATH  Google Scholar 

  17. Malmivuo J, Plonsey R (1995) Bioelectromagnetism—principles and applications of bioelectric and biomagnetic fields. Oxford University Press, Oxford

  18. Meijs JWH, Weier OW, Peters MJ, van Oosterom A (1989) On the numerical accuracy of the boundary element method. IEEE Trans Biomed Eng 36(10):1038–1049

    Article  Google Scholar 

  19. Mosher JC, Leahy RM (1998) Recursive MUSIC: a framework for EEG and MEG source localization. IEEE Trans Biomed Eng 45(11):1342–1354

    Article  Google Scholar 

  20. Neilson LA, Kovalyov M, Koles ZJ (2005) A computationally efficient method for accurately solving the EEG forward problem in a finely discretized head model. Comput Mech 116(10):2302–2314

    Google Scholar 

  21. Oostendorp TF, Delbecke J, Stegeman DF (2000) The conductivity of the human skull: Results of in vivo and in vitro measurements. IEEE Trans Biomed Eng 47(11):1467–1492

    Article  Google Scholar 

  22. Pascual-Marqui RD, Michel CM, Lehmann D (1994) Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. Int J Psychophysiol 18:49–65

    Article  Google Scholar 

  23. Tuch D, Wedeen V, Dale A, George J, Belliveau J (2001) Conductivity tensor mapping of the human brain using diffusion tensor MRI. Proc Natl Acad Sci USA 98:11,697–11,701

    Article  Google Scholar 

  24. van Oosterom A, Strackee J (1983) The solid angle of a plane triangle. IEEE Trans Biomed Eng 30(2):125–126

    Article  Google Scholar 

  25. von Ellenrieder N, Muravchik CH, Nehorai A (2006) Effects of geometric head model perturbations on the EEG inverse problem. IEEE Trans Biomed Eng 53(2):249–257

    Google Scholar 

  26. Wang Y, Gotman J (2001) The influence of electrode location errors on EEG dipole source localization with a realistic head model. Clin Neurophysiol 112:1777–1780

    Google Scholar 

  27. Wellcome Trust Center for Neuroimaging (2008) Statistic parametrical mapping (SPM) toolbox. Online, URL http://www.fil.ion.ucl.ac.uk/spm/

  28. Wendel K, Malmivuo J (2006) Correlation between live and post mortem skull conductivity measurements. In Twenty-eighth annual international conference of the IEEE engineering in medicine and biology society, EMBS ’06, pp 4285–4288. doi:10.1109/IEMBS.2006.259434

  29. Wolters CH, Anwander A, Tricoche X, Weinstein D, Koch MA, MacLeod RS (2006) Influence of tissue conductivity anisotropy on EEG/MEG field and return current computation in a realistic head model: a simulation and visualization study using high-resolution finite element modeling. NeuroImage 30(3):813–826

    Article  Google Scholar 

  30. Wood CC, George JS, Lewis PS, Ranken DM, Heller L (1990) Anatomical constraints for neuromagnetic source models. Soc Neurosci, Abstracts 16:1241

    Google Scholar 

  31. Xu C, Pham D, Rettmann M, Yu D, Prince J (1999) Reconstruction of the human cerebral cortex from magnetic resonance images. IEEE Trans Med Imag 18(6):467–480

    Article  Google Scholar 

  32. Yetik I, Nehorai A, Muravchik C, Haueisen J, Eiselt M (2006) Surface-source modeling and estimation using biomagnetic measurements. IEEE Trans Biomed Eng 53(10):1872–1882

    Article  Google Scholar 

  33. Zhang Y, van Drongelen W, He B (2006) Estimation of in vivo brain-to-skull conductivity ratio in humans. Appl Phys Lett 89(22):223,903–2239,033

    Google Scholar 

Download references

Acknowledgments

This study was funded by ANPCyT PICT 11-00535 and PICT 35423, by the MinCyT (Argentina)—CITMA (Cuba) Bilateral Cooperation Project CU/PA/03–SV/022, and by UNLP. The study of NvE was supported by CONICET and that of CHM was supported by CICpBA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolás von Ellenrieder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

von Ellenrieder, N., Valdés-Hernández, P.A. & Muravchik, C.H. On the EEG/MEG forward problem solution for distributed cortical sources. Med Biol Eng Comput 47, 1083–1091 (2009). https://doi.org/10.1007/s11517-009-0529-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-009-0529-x

Keywords

Navigation