Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

All-Optical Plasmonic Switches Based on Coupled Nano-disk Cavity Structures Containing Nonlinear Material

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

All-optical plasmonic switches based on a novel coupled nano-disk cavity configuration containing nonlinear material are proposed and numerically investigated. The finite difference time domain simulation results reveal that the single-disk plasmonic structure can operate as an “on–off” switch with the presence/absence of pumping light. We also demonstrate that the proposed T-shaped plasmonic structure with two disk cavities can switch signal light from one port to another under an optical pumping light, functioning as a bidirectional switch. The proposed nano-disk cavity plasmonic switches have many advantages such as compact size, requirement of low pumping light intensity, and ultra-fast switching time at a femto-second scale, which are promising for future integrated plasmonic devices for applications such as communications, signal processing, and sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Barnes WL, Dereus A, Ebbsen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830

    Article  CAS  Google Scholar 

  2. Gramotnev DK, Bozhevolnyi SI (2010) Plasmonics beyond the diffraction limit. Nature Photonics 4:83–91

    Article  CAS  Google Scholar 

  3. Zhao H, Guang X, Huang J (2008) Novel optical directional couplers based on surface plasmon polaritons. Physica E 40(10):3025–3209

    Article  Google Scholar 

  4. Hosseini A, Massoud Y (2006) A low-loss metal-insulator-metal plasmonic bragg reflector. Opt Express 14(23):11318–11323

    Article  Google Scholar 

  5. Wang TB, Wen XW, Yin CP, Wang HZ (2009) The transmission characteristics of surface plasmon polaritons in ring resonator. Opt Express 17(26):24096–24101

    Article  CAS  Google Scholar 

  6. Bozhevolnyi SI, Volkov VS, Devaux E, Laluet JY, Ebbesen TW (2006) Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440:508–511

    Article  CAS  Google Scholar 

  7. Lin XS, Huang XG (2008) Tooth-shaped plasmonic waveguide filters with nanometeric sizes. Opt Lett 33(23):2874–2876

    Article  Google Scholar 

  8. Lin XS, Huang XG (2009) Numerical modeling of a teeth-shaped nanoplasmonic waveguide filter. J Opt Soc Am B 26(7):1263–1268

    Article  CAS  Google Scholar 

  9. Tao J, Huang XG, Lin XS, Zhang Q, Jin X (2009) A narrow-band subwavelength plasmonic waveguide filter with asymmetrical multiple-teeth-shaped structure. Opt Express 17(16):13989–13994

    Article  CAS  Google Scholar 

  10. Tao J, Huang XG, Lin XS, Chen JH, Zhang Q, Jin XP (2010) Systematical research on characteristics of double-side teeth-shaped nano-plasmonic waveguide filters. J Opt Soc Am B 27(2):323–327

    Article  CAS  Google Scholar 

  11. Yu N, Blanchard R, Fan J, Wang QJ, Plfugl C, Diehl L, Edamura T, Yamanishi M, Kan H, Capasso F (2008) Quantum cascade lasers with integrated plasmonic antenna-array collimators. Opt Express 16:19447

    Article  CAS  Google Scholar 

  12. Yu N, Wang QJ, Pflugl C, Diehl L, Capasso F, Edamura T, Furuta S, Yamanishi M, Kan H (2009) Semiconductor lasers with integrated plasmonic polarizer. Appl Phys Lett 94:151101

    Article  Google Scholar 

  13. Yu N, Kats M, Pflugl C, Geiser M, Wang QJ, Belkin MA, Capasso F, Fischer M, Wittmann A, Faist J, Edamura T, Furuta S, Yamanishi M, Kan H (2009) Multi-beam multi-wavelength semiconductor lasers. Appl Phys Lett 95:161108

    Article  Google Scholar 

  14. Yu N, Wang QJ, Kats MA, Fan JA, Khanna SP, Li L, Davies AG, Linfield EH, Capasso F (2010) Designer spoof surface plasmon structures collimate terahertz laser beams. Nat Mater 9:730–735

    Article  CAS  Google Scholar 

  15. Lereu AL, Passian A, Goudonnet JP, Thundat T, Ferrell TL (2005) Optical modulation processes in thin films based on thermal effects of surface plasmons. Appl Phys Lett 86:154101

    Article  Google Scholar 

  16. Pacifici D, Lezec HJ, Atwater HA (2007) All-optical modulation by plasmonic excitation of CdSe quantum dots. Nature Photonic 1:402–406

    Article  CAS  Google Scholar 

  17. Dicken MJ, Sweatlock LA, Pacifici D, Lezec HJ, Bhattacharya K, Atwater HA (2008) Electroopt modulation in thin film barium titanate plasmonic interferometers. Nano Lett 8:4048–4052

    Article  CAS  Google Scholar 

  18. Hsiao KS, Zheng YB, Juluri BK, Huang TJ (2008) Light-driven plasmonic switches based on Au nanodisk arrays and photoresponsive liquid crystal. Adv Mater 20:3528–3532

    Article  CAS  Google Scholar 

  19. Pala RA, Shimizu KT, Melosh NA, Brongersma ML (2008) A nonvolatile plasmonic switch employing photochromic molecules. Nano Lett 8(5):1506–1510

    Article  CAS  Google Scholar 

  20. Wurtz GA, Zayats AV (2008) Nonlinear surface plasmon polariton polaritonic crystal. Laser Photon Rev 2:125–135

    Article  CAS  Google Scholar 

  21. Liu YM, Bartal G, Genov DA, Zhang X (2007) Subwavelength discrete solitons in nolinear metamaterials. Phys Rev Lett 99:153901

    Article  Google Scholar 

  22. Wurtz GA, Pollard R, Zayats AV (2006) Optical bistability in nonlinear surface-plasmon polaritonic crystals. Phys Rev Lett 97:057402

    Article  CAS  Google Scholar 

  23. Porto JA, Moreno LM, Garcia-Vidal FJ (2004) Optical bistability in subwavelength slit apertures containing nonlinear media. Phys Rev B 70:081402

    Article  Google Scholar 

  24. Schilders WHA, Ciarlet PG, Linons J, Maten EJWT. Numerical Methods in Electromagnetics (Elsevier, 2005). In this paper a commercial software Lumerical FDTD solution is used for simulation

  25. Palik ED. Handbook of Optical Constant of Solids (Academic, 1985)

  26. Haus HA, Lai Y (1992) Theory of Cascaded Quarter wave shifted distributed feedback resonators. IEEE J Quantum Electron 28(1):205–213

    Article  CAS  Google Scholar 

  27. Chremmos I (2009) Magnetic field integral equation analysis of interaction between a surface plasmon polariton and a circular dielectric cavity embedded in the metal. J Opt Soc Am A 26:2623–2633

    Article  Google Scholar 

  28. Liao HB, Xiao RF, Fu JS, Wang H, Wong KS, Wong GKL (1998) Origin of third-order optical nonlinearity in Au:SiO2 composite films on femtosecond and picosecond time scales. Opt Lett 23:388–390

    Article  CAS  Google Scholar 

  29. Al-hemyari K (1993) Ultrafast all-optical switching in GaAlAs directional couplers at 1.55 μm without multiphoton absorption. Appl Phys Lett 63(36):3562

    Article  CAS  Google Scholar 

  30. Andreas A (2010) Reiserer, Jer-Shing Huang, Bert Hecht, and Tobias Brixner, Subwavelength broadband splitters and switches for femtosecond plasmonic signals, Opt Express 18:11810–11820

    Article  Google Scholar 

  31. Plum E, Fedotov VA, Kuo P, Tsai DP, Zheludev NI (2009) Towards the lasing spaser: controlling metamaterial optical response with semiconductor quantum dots. Opt Express 17(10):8548

    Article  CAS  Google Scholar 

  32. Noginov MA, Zhu G, Mayy M, Ritzo BA, Noginova N, Podolskiy VA (2008) Stimulated emission of surface plasmon polaritons. Phys Rev Lett 101:226806

    Article  CAS  Google Scholar 

  33. Dubinov A, Aleshkin VY, Mitin V, Otsuji T, Ryzhii V (2011) Terahertz surface plasmons in optical pumped graphene structures. J Phys Condens Matter 23:145302

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the grant (grant number M58040017) from Nanyang Technological University (NTU), Singapore. Support from the CNRS International-NTU-Thales Research Alliance (CINTRA) Laboratory, UMI 3288, Singapore 637553, is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Jie Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tao, J., Wang, Q.J. & Huang, X.G. All-Optical Plasmonic Switches Based on Coupled Nano-disk Cavity Structures Containing Nonlinear Material. Plasmonics 6, 753–759 (2011). https://doi.org/10.1007/s11468-011-9260-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-011-9260-1

Keywords

Navigation