Abstract
All-optical plasmonic switches based on a novel coupled nano-disk cavity configuration containing nonlinear material are proposed and numerically investigated. The finite difference time domain simulation results reveal that the single-disk plasmonic structure can operate as an “on–off” switch with the presence/absence of pumping light. We also demonstrate that the proposed T-shaped plasmonic structure with two disk cavities can switch signal light from one port to another under an optical pumping light, functioning as a bidirectional switch. The proposed nano-disk cavity plasmonic switches have many advantages such as compact size, requirement of low pumping light intensity, and ultra-fast switching time at a femto-second scale, which are promising for future integrated plasmonic devices for applications such as communications, signal processing, and sensing.
Similar content being viewed by others
References
Barnes WL, Dereus A, Ebbsen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830
Gramotnev DK, Bozhevolnyi SI (2010) Plasmonics beyond the diffraction limit. Nature Photonics 4:83–91
Zhao H, Guang X, Huang J (2008) Novel optical directional couplers based on surface plasmon polaritons. Physica E 40(10):3025–3209
Hosseini A, Massoud Y (2006) A low-loss metal-insulator-metal plasmonic bragg reflector. Opt Express 14(23):11318–11323
Wang TB, Wen XW, Yin CP, Wang HZ (2009) The transmission characteristics of surface plasmon polaritons in ring resonator. Opt Express 17(26):24096–24101
Bozhevolnyi SI, Volkov VS, Devaux E, Laluet JY, Ebbesen TW (2006) Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440:508–511
Lin XS, Huang XG (2008) Tooth-shaped plasmonic waveguide filters with nanometeric sizes. Opt Lett 33(23):2874–2876
Lin XS, Huang XG (2009) Numerical modeling of a teeth-shaped nanoplasmonic waveguide filter. J Opt Soc Am B 26(7):1263–1268
Tao J, Huang XG, Lin XS, Zhang Q, Jin X (2009) A narrow-band subwavelength plasmonic waveguide filter with asymmetrical multiple-teeth-shaped structure. Opt Express 17(16):13989–13994
Tao J, Huang XG, Lin XS, Chen JH, Zhang Q, Jin XP (2010) Systematical research on characteristics of double-side teeth-shaped nano-plasmonic waveguide filters. J Opt Soc Am B 27(2):323–327
Yu N, Blanchard R, Fan J, Wang QJ, Plfugl C, Diehl L, Edamura T, Yamanishi M, Kan H, Capasso F (2008) Quantum cascade lasers with integrated plasmonic antenna-array collimators. Opt Express 16:19447
Yu N, Wang QJ, Pflugl C, Diehl L, Capasso F, Edamura T, Furuta S, Yamanishi M, Kan H (2009) Semiconductor lasers with integrated plasmonic polarizer. Appl Phys Lett 94:151101
Yu N, Kats M, Pflugl C, Geiser M, Wang QJ, Belkin MA, Capasso F, Fischer M, Wittmann A, Faist J, Edamura T, Furuta S, Yamanishi M, Kan H (2009) Multi-beam multi-wavelength semiconductor lasers. Appl Phys Lett 95:161108
Yu N, Wang QJ, Kats MA, Fan JA, Khanna SP, Li L, Davies AG, Linfield EH, Capasso F (2010) Designer spoof surface plasmon structures collimate terahertz laser beams. Nat Mater 9:730–735
Lereu AL, Passian A, Goudonnet JP, Thundat T, Ferrell TL (2005) Optical modulation processes in thin films based on thermal effects of surface plasmons. Appl Phys Lett 86:154101
Pacifici D, Lezec HJ, Atwater HA (2007) All-optical modulation by plasmonic excitation of CdSe quantum dots. Nature Photonic 1:402–406
Dicken MJ, Sweatlock LA, Pacifici D, Lezec HJ, Bhattacharya K, Atwater HA (2008) Electroopt modulation in thin film barium titanate plasmonic interferometers. Nano Lett 8:4048–4052
Hsiao KS, Zheng YB, Juluri BK, Huang TJ (2008) Light-driven plasmonic switches based on Au nanodisk arrays and photoresponsive liquid crystal. Adv Mater 20:3528–3532
Pala RA, Shimizu KT, Melosh NA, Brongersma ML (2008) A nonvolatile plasmonic switch employing photochromic molecules. Nano Lett 8(5):1506–1510
Wurtz GA, Zayats AV (2008) Nonlinear surface plasmon polariton polaritonic crystal. Laser Photon Rev 2:125–135
Liu YM, Bartal G, Genov DA, Zhang X (2007) Subwavelength discrete solitons in nolinear metamaterials. Phys Rev Lett 99:153901
Wurtz GA, Pollard R, Zayats AV (2006) Optical bistability in nonlinear surface-plasmon polaritonic crystals. Phys Rev Lett 97:057402
Porto JA, Moreno LM, Garcia-Vidal FJ (2004) Optical bistability in subwavelength slit apertures containing nonlinear media. Phys Rev B 70:081402
Schilders WHA, Ciarlet PG, Linons J, Maten EJWT. Numerical Methods in Electromagnetics (Elsevier, 2005). In this paper a commercial software Lumerical FDTD solution is used for simulation
Palik ED. Handbook of Optical Constant of Solids (Academic, 1985)
Haus HA, Lai Y (1992) Theory of Cascaded Quarter wave shifted distributed feedback resonators. IEEE J Quantum Electron 28(1):205–213
Chremmos I (2009) Magnetic field integral equation analysis of interaction between a surface plasmon polariton and a circular dielectric cavity embedded in the metal. J Opt Soc Am A 26:2623–2633
Liao HB, Xiao RF, Fu JS, Wang H, Wong KS, Wong GKL (1998) Origin of third-order optical nonlinearity in Au:SiO2 composite films on femtosecond and picosecond time scales. Opt Lett 23:388–390
Al-hemyari K (1993) Ultrafast all-optical switching in GaAlAs directional couplers at 1.55 μm without multiphoton absorption. Appl Phys Lett 63(36):3562
Andreas A (2010) Reiserer, Jer-Shing Huang, Bert Hecht, and Tobias Brixner, Subwavelength broadband splitters and switches for femtosecond plasmonic signals, Opt Express 18:11810–11820
Plum E, Fedotov VA, Kuo P, Tsai DP, Zheludev NI (2009) Towards the lasing spaser: controlling metamaterial optical response with semiconductor quantum dots. Opt Express 17(10):8548
Noginov MA, Zhu G, Mayy M, Ritzo BA, Noginova N, Podolskiy VA (2008) Stimulated emission of surface plasmon polaritons. Phys Rev Lett 101:226806
Dubinov A, Aleshkin VY, Mitin V, Otsuji T, Ryzhii V (2011) Terahertz surface plasmons in optical pumped graphene structures. J Phys Condens Matter 23:145302
Acknowledgments
This work is supported by the grant (grant number M58040017) from Nanyang Technological University (NTU), Singapore. Support from the CNRS International-NTU-Thales Research Alliance (CINTRA) Laboratory, UMI 3288, Singapore 637553, is also acknowledged.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Tao, J., Wang, Q.J. & Huang, X.G. All-Optical Plasmonic Switches Based on Coupled Nano-disk Cavity Structures Containing Nonlinear Material. Plasmonics 6, 753–759 (2011). https://doi.org/10.1007/s11468-011-9260-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11468-011-9260-1