Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Applications and prospects of artificial intelligence in covert satellite communication: a review

  • Review
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Satellite communication has the characteristics of wide coverage and large communication capacity, and is not easily affected by land disasters. It is quite suitable as a supplement to terrestrial communication networks and has been widely used in education, navigation, emergency relief, military, etc. However, due to the openness of the channel of satellite communication systems, satellite communication signals are easily eavesdropped on by eavesdroppers. This greatly threatens the privacy and security of countries and individuals. Covert satellite communication can effectively improve the covertness of satellite communication systems and greatly reduce the probability of detection by eavesdroppers. So, it has attracted more and more attention. In addition, with the development of artificial intelligence (AI), AI has been applied in many technics of covert satellite communication, which has achieved higher reliability and stronger concealment in covert satellite communication systems. The research status of key technics in covert satellite communication is discussed in this study, and the applications of AI in covert satellite communication are shown. Finally, future research directions of covert satellite communication are looked forward to. In the future, covert satellite communication technology will be an indispensable part of satellite communication systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. You X H, Wang C-X, Huang J, et al. Towards 6G wireless communication networks: vision, enabling technologies, and new paradigm shifts. Sci China Inf Sci, 2021, 64: 110301

    Article  Google Scholar 

  2. Liu D K, Zhang Z S, Ke S, et al. Joint angle delay estimation in terahertz large-scale array system. Sci China Inf Sci, 2020, 63: 180304

    Article  MathSciNet  Google Scholar 

  3. Wang C H, Zhang Z S, Wu J Y, et al. An overview of protected satellite communications in intelligent age. Sci China Inf Sci, 2021, 64: 161301

    Article  Google Scholar 

  4. Ke S, An J P, Wang S. Synthesis-free directional modulation for retrodirective frequency diverse array. Sci China Inf Sci, 2020, 63: 202304

    Article  MathSciNet  Google Scholar 

  5. Yue P, An J, Zhang J, et al. On the security of LEO satellite communication systems: Vulnerabilities, countermeasures, and future trends. 2022. arXiv.2201.03063

  6. Petitcolas F A P, Anderson R J, Kuhn M G. Information hiding—a survey. Proc IEEE, 1999, 87: 1062–1078

    Article  Google Scholar 

  7. Chen C, Wang S, Li L, et al. Intelligent covert satellite communication for military robot swarm. IEEE Access, 2019, 8: 5363–5382

    Article  Google Scholar 

  8. Xie A-H, Zhu L-D, Zhai J-Q, et al. A method of designing covert DSSS-signal for anti-blind detection (in Chinese). Acta Electron Sin, 2018, 46: 2817–2823

    Google Scholar 

  9. Wang S, Chen S, Wang A, et al. Joint timing and channel estimation for bandlimited long-code-based MC-DS-CDMA: a low-complexity near-optimal algorithm and the CRLB. IEEE Trans Commun, 2013, 61: 1998–2011

    Article  Google Scholar 

  10. Liu Y, Ning P, Dai H, et al. Randomized differential DSSS: jamming-resistant wireless broadcast communication. In: Proceedings of the 29th Conference on Information Communications, San Diego, 2010. 695–703

  11. Chung J H, Yang K. Optimal frequency-hopping sequences with new parameters. IEEE Trans Inform Theor, 2010, 56: 1685–1693

    Article  MathSciNet  Google Scholar 

  12. Luo S X, Zhang Z S, Wang S, et al. Network for hypersonic UCAV swarms. Sci China Inf Sci, 2020, 63: 140311

    Article  Google Scholar 

  13. Gao L, Zhang Y, Pan S. Research on power control strategy in satellite overlap communication system (in Chinese). Radio Commun Tech, 2016, 42: 21–23, 27

    Google Scholar 

  14. Xue R, Wang Y. A satellite overlapping covert communication scheme based on LDPC-DCSK transmission technology. In: Proceedings of the 9th International Conference on Networks, Communication and Computing, Tokyo, 2020

  15. Zhang B, Zhang J, Guo D. Overlay communication based on satellite with DSSS signal (in Chinese). J Commun, 2005, 26: 57–62

    Google Scholar 

  16. Koivisto T, Koivunen V. Blind despreading of short-code DS-CDMA signals in asynchronous multi-user systems. Signal Processing, 2007, 87: 2560–2568

    Article  Google Scholar 

  17. Tsatsanis M K, Giannakis G B. Blind estimation of direct sequence spread spectrum signals in multipath. IEEE Trans Signal Process, 1997, 45: 1241–1252

    Article  Google Scholar 

  18. Gu X, Zhao Z, Shen L. Blind estimation of pseudo-random codes in periodic long code direct sequence spread spectrum signals. IET Commun, 2016, 10: 1273–1281

    Article  Google Scholar 

  19. Wyner A D. The wire-tap channel. Bell Syst Technical J, 1975, 54: 1355–1387

    Article  MathSciNet  Google Scholar 

  20. Yan S, Zhou X, Hu J, et al. Low probability of detection communication: opportunities and challenges. IEEE Wireless Commun Mag, 2019, 26: 19–25

    Article  Google Scholar 

  21. Chai X M, Xu X, Zhang Z S. A user-selected uplink power control algorithm in the two-tier femtocell network. Sci China Inf Sci, 2015, 58: 042303

    Article  Google Scholar 

  22. Lu K, Cong Y, Fang J, et al. A joint code-doppler acquisition algorithm for DSSS-MSK based on FFT. In: Proceedings of IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), Chongqing, 2020. 1118–1123

  23. Parker D, Zimmermann D C. Phased arrays-part 1: theory and architectures. IEEE Trans Microwave Theor Techn, 2002, 50: 678–687

    Article  Google Scholar 

  24. Parker D, Zimmermann D C. Phased arrays-part II: implementations, applications, and future trends. IEEE Trans Microwave Theor Techn, 2002, 50: 688–698

    Article  Google Scholar 

  25. Gao G X, Sgammini M, Lu M, et al. Protecting GNSS receivers from jamming and interference. Proc IEEE, 2016, 104: 1327–1338

    Article  Google Scholar 

  26. Acharya P A K, Singh S, Zheng H. Reliable open spectrum communications through proactive spectrum access. In: Proceedings of the 1st International Workshop on Technology and Policy for Accessing Spectrum, Association for Computing Machinery, New York, 2006

    Google Scholar 

  27. Fan W F, Lu P, Tian C. Unifying logic rules and machine learning for entity enhancing. Sci China Inf Sci, 2020, 63: 172001

    Article  MathSciNet  Google Scholar 

  28. Mi H B, Xu K L, Feng D W, et al. Collaborative deep learning across multiple data centers. Sci China Inf Sci, 2020, 63: 182102

    Article  MathSciNet  Google Scholar 

  29. Ning Z L, Sun S M, Wang X J, et al. Intelligent resource allocation in mobile blockchain for privacy and security transactions: a deep reinforcement learning based approach. Sci China Inf Sci, 2021, 64: 162303

    Article  MathSciNet  Google Scholar 

  30. Ye N, An J, Yu J. Deep-learning-enhanced NOMA transceiver design for massive MTC: challenges, state of the art, and future directions. IEEE Wireless Commun, 2021, 28: 66–73

    Article  Google Scholar 

  31. Ye N, Li X, Yu H, et al. Deep learning aided grant-free NOMA toward reliable low-latency access in tactile Internet of Things. IEEE Trans Ind Inf, 2019, 15: 2995–3005

    Article  Google Scholar 

  32. Chan K S, Zary N. Applications and challenges of implementing artificial intelligence in medical education: integrative review. JMIR Med Educ, 2019, 5: e13930

    Article  Google Scholar 

  33. Lin M, Zhao Y. Artificial intelligence-empowered resource management for future wireless communications: a survey. China Commun, 2020, 17: 58–77

    Article  Google Scholar 

  34. Simeone O. A very brief introduction to machine learning with applications to communication systems. IEEE Trans Cogn Commun Netw, 2018, 4: 648–664

    Article  Google Scholar 

  35. Wang J, Jiang C, Zhang H, et al. Thirty years of machine learning: the road to pareto-optimal wireless networks. IEEE Commun Surv Tutorials, 2020, 22: 1472–1514

    Article  Google Scholar 

  36. Du J, Jiang C, Wang J, et al. Machine learning for 6G wireless networks: carrying forward enhanced bandwidth, massive access, and ultrareliable/low-latency service. IEEE Veh Technol Mag, 2020, 15: 122–134

    Article  Google Scholar 

  37. Fourati F, Alouini M-S. Artificial intelligence for satellite communication: a review. Intell Converged Networks, 2021, 2: 213–243

    Article  Google Scholar 

  38. Huang G, Ge C J, Xiong T Y, et al. Large scale air pollution prediction with deep convolutional networks. Sci China Inf Sci, 2021, 64: 192107

    Article  Google Scholar 

  39. Li W X, Lin N, Zhang M Z, et al. VNet: a versatile network to train real-time semantic segmentation models on a single GPU. Sci China Inf Sci, 2022, 65: 139105

    Article  Google Scholar 

  40. Ferre R M, de la Fuente A, Lohan E S. Jammer classification in GNSS bands via machine learning algorithms. Sensors, 2019, 19: 4841

    Article  Google Scholar 

  41. Wu Z, Zhao Y, Yin Z, et al. Jamming signals classification using convolutional neural network. In: Proceedings of IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), Bilbao, 2017. 62–67

  42. Kartchner D R, Palmer R, Jayaweera S K. Satellite navigation anti-spoofing using deep learning on a receiver network. In: Proceedings of IEEE Cognitive Communications for Aerospace Applications Workshop (CCAAW), Cleveland, 2021. 1–5

  43. Zhang T, Wang D, Wang D, et al. Modulation format recognition based on CNN in satellite communication system. In: Proceedings of IEEE 21st International Conference on Communication Technology (ICCT), 2021. 1392–1396

  44. Jiang J, Wang Z, Zhao H, et al. Modulation recognition method of satellite communication based on cldnn model. In: Proceedings of IEEE 30th International Symposium on Industrial Electronics (ISIE), Kyoto, 2021. 1–6

  45. Elbir A M, Mishra K V. Joint antenna selection and hybrid beamformer design using unquantized and quantized deep learning networks. IEEE Trans Wireless Commun, 2020, 19: 1677–1688

    Article  Google Scholar 

  46. Mennes R, Claeys M, de Figueiredo F A P, et al. Deep learning-based spectrum prediction collision avoidance for hybrid wireless environments. IEEE Access, 2019, 7: 45818–45830

    Article  Google Scholar 

  47. Lee W, Kim M, Cho D H. Deep power control: transmit power control scheme based on convolutional neural network. IEEE Commun Lett, 2018, 22: 1276–1279

    Article  Google Scholar 

  48. Lee K, Lee J R, Choi H H. Learning-based joint optimization of transmit power and harvesting time in wireless-powered networks with co-channel interference. IEEE Trans Veh Technol, 2020, 69: 3500–3504

    Article  Google Scholar 

  49. Gherrity M. A learning algorithm for analog, fully recurrent neural networks. In: Proceedings of International 1989 Joint Conference on Neural Networks, Washington, 1989. 643–644

  50. Hochreiter S, Schmidhuber J. Long short-term memory. Neural Computation, 1997, 9: 1735–1780

    Article  Google Scholar 

  51. Gunn L, Smet P, Arbon E, et al. Anomaly detection in satellite communications systems using LSTM networks. In: Proceedings of Military Communications and Information Systems Conference (MilCIS), 2018

  52. Lee S, Kim S, Seo M, et al. Synchronization of frequency hopping by LSTM network for satellite communication system. IEEE Commun Lett, 2019, 23: 2054–2058

    Article  Google Scholar 

  53. Yu L, Chen J, Ding G. Spectrum prediction via long short term memory. In: Proceedings of the 3rd IEEE International Conference on Computer and Communications (ICCC), Chengdu, 2017. 643–647

  54. Yu L, Wang Q, Guo Y, et al. Spectrum availability prediction in cognitive aerospace communications: a deep learning perspective. In: Proceedings of Cognitive Communications for Aerospace Applications Workshop (CCAA), 2017. 1–4

  55. Yu L, Chen J, Ding G, et al. Spectrum prediction based on taguchi method in deep learning with long short-term memory. IEEE Access, 2018, 6: 45923–45933

    Article  Google Scholar 

  56. Shawel B S, Woledegebre D H, Pollin S. Deep-learning based cooperative spectrum prediction for cognitive networks. In: Proceedings of International Conference on Information and Communication Technology Convergence (ICTC), Jeju, 2018. 133–137

  57. Tsuchida H, Kawamoto Y, Kato N, et al. Efficient power control for satellite-borne batteries using Q-learning in low-earth-orbit satellite constellations. IEEE Wireless Commun Lett, 2020, 9: 809–812

    Article  Google Scholar 

  58. Xiong D N, Yi L. Q-learning based handoff algorithm for satellite system with ancillary terrestrial component. J Commun, 2015, 36: 252

    Google Scholar 

  59. Yao F, Jia L, Sun Y, et al. A hierarchical learning approach to anti-jamming channel selection strategies. Wireless Netw, 2019, 25: 201–213

    Article  Google Scholar 

  60. Noori H, Vilni S. Jamming and anti-jamming in interference channels: a stochastic game approach. IET Commun, 2020, 14: 682–692

    Article  Google Scholar 

  61. Han C, Liu A, Wang H, et al. Dynamic anti-jamming coalition for satellite-enabled army IoT: a distributed game approach. IEEE Internet Things J, 2020, 7: 10932–10944

    Article  Google Scholar 

  62. Nasir Y S, Guo D. Multi-agent deep reinforcement learning for dynamic power allocation in wireless networks. IEEE J Sel Areas Commun, 2019, 37: 2239–2250

    Article  Google Scholar 

  63. Wang M Q, Yuan W W, Zhang J Y. Overview of research on generative adversarial network GAN (in Chinese). Comput Eng Design, 2021, 42: 3389–3395

    Google Scholar 

  64. Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets. In: Proceedings of Advances in Neural Information Processing Systems, 2014

  65. Moti Z, Hashemi S, Namavar A. Discovering future malware variants by generating new malware samples using generative adversarial network. In: Proceedings of the 9th International Conference on Computer and Knowledge Engineering (ICCKE), Mashhad, 2019. 319–324

  66. Creswell A, White T, Dumoulin V, et al. Generative adversarial networks: an overview. IEEE Signal Process Mag, 2018, 35: 53–65

    Article  Google Scholar 

  67. Guan Q, Shuang W. Detection for multisatellite downlink signal based on generative adversarial neural network. Math Problems Eng, 2020, 2020: 1–14

    MathSciNet  Google Scholar 

  68. Davaslioglu K, Sagduyu Y E. Generative adversarial learning for spectrum sensing. In: Proceedings of 2018 IEEE International Conference on Communications (ICC), Kansas City, 2018. 1–6

  69. Lin F, Chen J, Ding G, et al. Spectrum prediction based on GAN and deep transfer learning: a cross-band data augmentation framework. China Commun, 2021, 18: 18–32

    Article  Google Scholar 

  70. Liao X, Si J, Shi J, et al. Generative adversarial network assisted power allocation for cooperative cognitive covert communication system. IEEE Commun Lett, 2020, 24: 1463–1467

    Article  Google Scholar 

  71. Fischer C M, Wartick M, Mark M M. Detection probability and taxpayer compliance: a review of the literature. J Accounting Literature, 1992, 11: 1–46

    Google Scholar 

  72. Ding X, An J, Zhao Z, et al. Low-density parity-check coded direct sequence spread spectrum receiver based on analog probabilistic processing. IEEE Trans Veh Technol, 2021, 70: 6355–6370

    Article  Google Scholar 

  73. Pickholtz R, Schilling D, Milstein L. Theory of spread-spectrum communications—a tutorial. IEEE Trans Commun, 1982, 30: 855–884

    Article  Google Scholar 

  74. Scholtz R. The spread spectrum concept. IEEE Trans Commun, 1977, 25: 748–755

    Article  Google Scholar 

  75. Bark G. Power control and active channel selection in an LPI FH system for HF communications. In: Proceedings of Military Communications Conference, 1997. 1031–1035

  76. Scholtz R. The origins of spread-spectrum communications. IEEE Trans Commun, 1982, 30: 822–854

    Article  Google Scholar 

  77. Cooper G R, Nettleton R W. A spread-spectrum technique for high-capacity mobile communications. IEEE Trans Veh Technol, 1978, 27: 264–275

    Article  Google Scholar 

  78. Xing Y, Hu A, Zhang J, et al. On radio frequency fingerprint identification for DSSS systems in low SNR scenarios. IEEE Commun Lett, 2018, 22: 2326–2329

    Article  Google Scholar 

  79. Liu F, Marcellin M W, Goodman N A, et al. Compressive sampling for detection of frequency-hopping spread spectrum signals. IEEE Trans Signal Process, 2016, 64: 5513–5524

    Article  MathSciNet  Google Scholar 

  80. Bash B A, Goeckel D, Towsley D. Limits of reliable communication with low probability of detection on AWGN channels. IEEE J Sel Areas Commun, 2013, 31: 1921–1930

    Article  Google Scholar 

  81. Abdelaziz A, Koksal C E. Fundamental limits of covert communication over MIMO AWGN channel. In: Proceedings of IEEE Conference on Communications and Network Security (CNS), Las Vegas, 2017. 1–9

  82. Wang L, Wornell G W, Zheng L. Fundamental limits of communication with low probability of detection. IEEE Trans Inform Theor, 2016, 62: 3493–3503

    Article  MathSciNet  Google Scholar 

  83. Tahmasbi M, Bloch M R. First- and second-order asymptotics in covert communication. IEEE Trans Inform Theor, 2019, 65: 2190–2212

    Article  MathSciNet  Google Scholar 

  84. Bloch M R. Covert communication over noisy channels: a resolvability perspective. IEEE Trans Inform Theor, 2016, 62: 2334–2354

    Article  MathSciNet  Google Scholar 

  85. Che P H, Bakshi M, Jaggi S. Reliable deniable communication: hiding messages in noise. In: Proceedings of IEEE International Symposium on Information Theory, Istanbul, 2013. 2945–2949

  86. Bloch M R, Guha S. Optimal covert communications using pulse-position modulation. In: Proceedings of IEEE International Symposium on Information Theory (ISIT), Aachen, 2017. 2825–2829

  87. Kadampot I A, Tahmasbi M, Bloch M R. Multilevel-coded pulse-position modulation for covert communications. In: Proceedings of IEEE International Symposium on Information Theory (ISIT), Vail, 2018. 1864–1868

  88. Li R, Cui J, Huang T, et al. Optimal pulse-position modulation order and transmit power in covert communications. IEEE Trans Veh Technol, 2022, 71: 5570–5575

    Article  Google Scholar 

  89. He B, Yan S, Zhou X, et al. On covert communication with noise uncertainty. IEEE Commun Lett, 2017, 21: 941–944

    Article  Google Scholar 

  90. Ta H Q, Kim S W. Covert communication under channel uncertainty and noise uncertainty. In: Proceedings of IEEE International Conference on Communications (ICC), Shanghai, 2019. 1–6

  91. Bash B A, Goeckel D, Towsley D. Covert communication gains from adversary’s ignorance of transmission time. IEEE Trans Wireless Commun, 2016, 15: 8394–8405

    Article  Google Scholar 

  92. Sobers T V, Bash B A, Guha S, et al. Covert communication in the presence of an uninformed jammer. IEEE Trans Wireless Commun, 2017, 16: 6193–6206

    Article  Google Scholar 

  93. Sobers T V, Bash B A, Goeckel D, et al. Covert communication with the help of an uninformed jammer achieves positive rate. In: Proceedings of the 49th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, 2015. 625–629

  94. Shahzad K, Zhou X, Yan S, et al. Achieving covert wireless communications using a full-duplex receiver. IEEE Trans Wireless Commun, 2018, 17: 8517–8530

    Article  Google Scholar 

  95. Yang L, Yang W, Xu S, et al. Achieving covert wireless communications using a full-duplex multi-antenna receiver. In: Proceedings of IEEE 5th International Conference on Computer and Communications (ICCC), Chengdu, 2019. 912–916

  96. He B, Yan S, Zhou X, et al. Covert wireless communication with a poisson field of interferers. IEEE Trans Wireless Commun, 2018, 17: 6005–6017

    Article  Google Scholar 

  97. Yang Y, Zhou J, Wang F, et al. An LPI design for secure burst communication systems. In: Proceedings of IEEE China Summit International Conference on Signal and Information Processing (ChinaSIP), Xi’an, 2014. 631–635

  98. Shakeel I. Machine learning based featureless signalling. In: Proceedings of IEEE Military Communications Conference (MILCOM), Los Angeles, 2018. 1–9

  99. Zhou J, Zheng S, Yu X, et al. Low probability of intercept communication based on structured radio beams using machine learning. IEEE Access, 2019, 7: 169946

    Article  Google Scholar 

  100. Sun J, Zhang Z, Xiao H, et al. Uplink interference coordination management with power control for D2D underlaying cellular networks: modeling, algorithms, and analysis. IEEE Trans Veh Technol, 2018, 67: 8582–8594

    Article  Google Scholar 

  101. Du C, Zhang Z, Wang X, et al. Optimal duplex mode selection for D2D-aided underlaying cellular networks. IEEE Trans Veh Technol, 2020, 69: 3119–3134

    Article  Google Scholar 

  102. Du C, Zhang Z, Wang X, et al. Deep learning based power allocation for workload driven full-duplex D2D-aided underlaying networks. IEEE Trans Veh Technol, 2020, 69: 15880–15892

    Article  Google Scholar 

  103. Khan S, Shin S Y. Deep learning aided transmit power estimation in mobile communication system. IEEE Commun Lett, 2019, 23: 1405–1408

    Article  Google Scholar 

  104. Liu C, Zhang Z. On connectivity of flying ad hoc networks in the presence of ground terminal. China Commun, 2021, 18: 1–10

    Article  Google Scholar 

  105. Hu J, Yan S, Zhou X, et al. Covert communications without channel state information at receiver in IoT systems. IEEE Internet Things J, 2020, 7: 11103–11114

    Article  Google Scholar 

  106. Wang J, Guo D, Zhang B, et al. Spectrum access and power control for cognitive satellite communications: a game-theoretical learning approach. IEEE Access, 2019, 7: 164216

    Article  Google Scholar 

  107. Dvorkind T G. Power allocation for covert communication, with application to underwater acoustic channel. In: Proceedings of IEEE International Conference on the Science of Electrical Engineering (ICSEE), Eilat, 2016. 1–5

  108. Shannon C E. A mathematical theory of communication. Bell Syst Technical J, 1948, 27: 379–423

    Article  MathSciNet  Google Scholar 

  109. Zuo P, Peng T, Linghu W, et al. Optimal resource allocation for hybrid interweave-underlay cognitive SatCom uplink. In: Proceedings of IEEE Wireless Communications and Networking Conference (WCNC), Barcelona, 2018. 1–6

  110. Gao B, Lin M, An K, et al. ADMM-based optimal power control for cognitive satellite terrestrial uplink networks. IEEE Access, 2018, 6: 64757–64765

    Article  Google Scholar 

  111. Vassaki S, Poulakis M I, Panagopoulos A D, et al. Power allocation in cognitive satellite terrestrial networks with QoS constraints. IEEE Commun Lett, 2013, 17: 1344–1347

    Article  Google Scholar 

  112. Shi S, An K, Li G, et al. Optimal power control in cognitive satellite terrestrial networks with imperfect channel state information. IEEE Wireless Commun Lett, 2018, 7: 34–37

    Article  Google Scholar 

  113. Hu J, Li G, Bian D, et al. Optimal power control for cognitive LEO constellation with terrestrial networks. IEEE Commun Lett, 2020, 24: 622–625

    Article  Google Scholar 

  114. Shi S, Li G, An K, et al. Optimal power control for real-time applications in cognitive satellite terrestrial networks. IEEE Commun Lett, 2017, 21: 1815–1818

    Google Scholar 

  115. Wang W, Zhao S, Zheng Y, et al. Resource allocation method of cognitive satellite terrestrial networks under non-ideal spectrum sensing. IEEE Access, 2019, 7: 7957–7964

    Article  Google Scholar 

  116. Letzepis N. Optimal power allocation for parallel gaussian channels with LPD constraints. In: Proceedings of IEEE Military Communications Conference, Baltimore, 2016. 103–107

  117. Forouzesh M, Azmi P, Kuhestani A. Secure transmission with covert requirement in untrusted relaying networks. In: Proceedings of the 9th International Symposium on Telecommunications (IST), Tehran, 2018. 670–675

  118. Hu J, Yan S, Zhou X, et al. Covert communication achieved by a greedy relay in wireless networks. IEEE Trans Wireless Commun, 2018, 17: 4766–4779

    Article  Google Scholar 

  119. Zheng T X, Wang H M, Ng D W K, et al. Multi-antenna covert communications in random wireless networks. IEEE Trans Wireless Commun, 2019, 18: 1974–1987

    Article  Google Scholar 

  120. Hu J, Yan S, Zhou X, et al. Covert wireless communications with channel inversion power control in Rayleigh fading. IEEE Trans Veh Technol, 2019, 68: 12135–12149

    Article  Google Scholar 

  121. Ma R, Yang X, Pan G, et al. Covert communications with channel inversion power control in the finite blocklength regime. IEEE Wireless Commun Lett, 2021, 10: 835–839

    Article  Google Scholar 

  122. Wang M, Yang W, Lu X, et al. Channel inversion power control aided covert communications in uplink NOMA systems. IEEE Wireless Commun Lett, 2022, 11: 871–875

    Article  Google Scholar 

  123. Hornik K, Stinchcombe M, White H. Multilayer feedforward networks are universal approximators. Neural Networks, 1989, 2: 359–366

    Article  Google Scholar 

  124. Sun H, Chen X, Shi Q, et al. Learning to optimize: training deep neural networks for interference management. IEEE Trans Signal Process, 2018, 66: 5438–5453

    Article  MathSciNet  Google Scholar 

  125. Lee W. Resource allocation for multi-channel underlay cognitive radio network based on deep neural network. IEEE Commun Lett, 2018, 22: 1942–1945

    Article  Google Scholar 

  126. Lee W, Jo O, Kim M. Intelligent resource allocation in wireless communications systems. IEEE Commun Mag, 2020, 58: 100–105

    Article  Google Scholar 

  127. Lee W, Lee K. Resource allocation scheme for guarantee of QoS in D2D communications using deep neural network. IEEE Commun Lett, 2021, 25: 887–891

    Article  Google Scholar 

  128. Lee W, Lee K. Deep learning-aided distributed transmit power control for underlay cognitive radio network. IEEE Trans Veh Technol, 2021, 70: 3990–3994

    Article  Google Scholar 

  129. Zhang H, Yang N, Huangfu W, et al. Power control based on deep reinforcement learning for spectrum sharing. IEEE Trans Wireless Commun, 2020, 19: 4209–4219

    Article  Google Scholar 

  130. Li X, Fang J, Cheng W, et al. Intelligent power control for spectrum sharing in cognitive radios: a deep reinforcement learning approach. IEEE Access, 2018, 6: 25463–25473

    Article  Google Scholar 

  131. Tan J, Liang Y C, Zhang L, et al. Deep reinforcement learning for joint channel selection and power control in D2D networks. IEEE Trans Wireless Commun, 2021, 20: 1363–1378

    Article  Google Scholar 

  132. Fan Z, Hong B, Du H. Review on anti-jamming technology for phased-array antenna of satellite. Space Electronic Tech, 2016, 13: 61–66

    Google Scholar 

  133. Meng M, Shi Y, Jiang Z, et al. A review of the development of space phased array antenna technology. In: Proceedings of the 3rd Aerospace Electronics Strategy Research Forum, Beijing, 2017

  134. Liu N. Research on key technologies of phased array antenna of vehicle satellite communication. Dissertation for Ph.D. Degree. Beijing: Beijing Institute of Technology, 2015

    Google Scholar 

  135. Lin M, Gong Z. Smart antenna and its application in satellite communication anti-jamming (in Chinese). Telecommun Sci, 2003, 19: 40–44

    Google Scholar 

  136. Kapusuz K Y, Sen Y, Bulut M, et al. Low-profile scalable phased array antenna at Ku-band for mobile satellite communications. In: Proceedings of IEEE International Symposium on Phased Array Systems and Technology (PAST), Waltham, 2016. 1–4

  137. Rao J B L, Mital R, Patel D P, et al. Low-cost phased array antenna for satellite communications on mobile earth stations. In: Proceedings of IEEE International Symposium on Phased Array Systems and Technology, Waltham, 2013. 214–219

  138. Zhang H T, Wang W, Jin M P, et al. An active phased array antenna for broadband mobile satellite communications at ka-band. In: Proceedings of CIE International Conference on Radar (RADAR), Guangzhou, 2016. 1–3

  139. Kumar B P, Kumar C, Kumar V S, et al. A spherical phased array antenna with unequal amplitude excitation for satellite application. In: Proceedings of IEEE International Conference on Antenna Innovations Modern Technologies for Ground, Aircraft and Satellite Applications (iAIM), Bangalore, 2017. 1–4

  140. Moon S M, Yun S, Yom I B, et al. Phased array shaped-beam satellite antenna with boosted-beam control. IEEE Trans Antennas Propagat, 2019, 67: 7633–7636

    Article  Google Scholar 

  141. Raj K V, Ranjitha S, Meghana V, et al. Satellite tracking using 7×7 hexagonal phased array antenna. In: Proceedings of the 4th International Conference on Recent Trends on Electronics, Information, Communication Technology (RTEICT), Bangalore, 2019. 369–374

  142. Lin Y, Ma Q, Wang S, et al. Calibration for spaceborne phased array antennas without interrupting satellite communications. In: Proceedings of the 9th International Conference on Wireless Communications and Signal Processing (WCSP), Nanjing, 2017. 1–5

  143. Ghaffarian N, Wahab W A, Raeesi A, et al. Characterization and calibration challenges of an k-band large-scale active phased-array antenna with a modular architecture. In: Proceedings of the 50th European Microwave Conference (EuMC), Utrecht, 2021. 1039–1042

  144. Mishchenko S E, Shatskij V V, Eliseev D Y, et al. Neural network approach to the solution of constructive synthesis problems of active phased antenna arrays. In: Proceedings of Radiation and Scattering of Electromagnetic Waves (RSEMW), Divnomorskoe, 2019. 256–260

  145. Lovato R, Gong X. Phased antenna array beamforming using convolutional neural networks. In: Proceedings of IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, Atlanta, 2019. 1247–1248

  146. Fournier J L, Titz D, Ferrero F, et al. Phased array antenna controlled by neural network FPGA. In: Proceedings of Loughborough Antennas Propagation Conference, Loughborough, 2011. 1–5

  147. Hameed I, Tuan P V, Koo I. Deep learning-based energy beamforming with transmit power control in wireless powered communication networks. IEEE Access, 2021, 9: 142795

    Article  Google Scholar 

  148. Sarayloo Z, Masoumi N, Shahi H, et al. A convolutional neural network approach for phased array calibration using power-only measurements. In: Proceedings of the 28th Iranian Conference on Electrical Engineering (ICEE), Tabriz, 2020. 1–6

  149. Southall H L, Simmers J A, O’Donnell T H. Direction finding in phased arrays with a neural network beamformer. IEEE Trans Antennas Propagat, 1995, 43: 1369–1374

    Article  Google Scholar 

  150. Savasta S, Presti L L, Rao M. Interference mitigation in GNSS receivers by a time-frequency approach. IEEE Trans Aerosp Electron Syst, 2013, 49: 415–438

    Article  Google Scholar 

  151. Lv Q, Qin H. A novel algorithm for adaptive notch filter to detect and mitigate the CWI for GNSS receivers. In: Proceedings of IEEE 3rd International Conference on Signal and Image Processing (ICSIP), Shenzhen, 2018. 444–451

  152. Chien Y R. Design of GPS anti-jamming systems using adaptive notch filters. IEEE Syst J, 2015, 9: 451–460

    Article  Google Scholar 

  153. Mao W L, Ma W J, Chien Y R, et al. New adaptive all-pass based notch filter for narrowband/FM anti-jamming GPS receivers. Circ Syst Signal Process, 2011, 30: 527–542

    Article  Google Scholar 

  154. Wang Z, Lv M, Tang B. Paper application of partial coefficient update LMS algorithm to suppress narrowband interference in DSSS system. In: Proceedings of International Conference on Communication Software and Networks, Chengdu, 2009. 275–278

  155. Zhang L, Yuan S, Chen Y, et al. Narrowband interference suppression in DSSS system based on frequency shift wavelet packet transform. In: Proceedings of the 9th International Conference on Electronic Measurement Instruments, Beijing, 2009. 333–337

  156. Djukanovic S, Dakovic M, Stankovic L. Local polynomial fourier transform receiver for nonstationary interference excision in DSSS communications. IEEE Trans Signal Process, 2008, 56: 1627–1636

    Article  MathSciNet  Google Scholar 

  157. Amin M G, Wang X, Zhang Y D, et al. Sparse arrays and sampling for interference mitigation and DOA estimation in GNSS. Proc IEEE, 2016, 104: 1302–1317

    Article  Google Scholar 

  158. Heng L, Walter T, Enge P, et al. GNSS multipath and jamming mitigation using high-mask-angle antennas and multiple constellations. IEEE Trans Intell Transp Syst, 2014, 16: 741–750

    Google Scholar 

  159. Zhao H, Shi Y, Zhang B, et al. Analysis and simulation of interference suppression for space-time adaptive processing. In: Proceedings of IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), Guilin, 2014. 724–727

  160. Xu H, Cheng Y, Liang J, et al. A jamming recognition algorithm based on deep neural network in satellite navigation system. In: Proceedings of China Satellite Navigation Conference, Chengdu, 2020. 701–711

  161. Erpek T, Sagduyu Y E, Shi Y. Deep learning for launching and mitigating wireless jamming attacks. IEEE Trans Cogn Commun Netw, 2019, 5: 2–14

    Article  Google Scholar 

  162. Lu X Z, Jie J F, Lin Z H, et al. Reinforcement learning based energy efficient robot relay for unmanned aerial vehicles against smart jamming. Sci China Inf Sci, 2022, 65: 112304

    Article  MathSciNet  Google Scholar 

  163. Abbasi M, Mosavi M R, Reazei M J. GPS continues wave jamming canceller using an ANF combined with an artificial neural network. In: Proceedings of the 8th Iranian Joint Congress on Fuzzy and intelligent Systems (CFIS), Mashhad, 2020. 99–104

  164. Shi Y, Liu Y. Interference suppression for satellite navigation based on neural network and wavelet packets transform. Adv Materials Res, 2012, 457–458: 1111–1117

    Article  Google Scholar 

  165. Ding G, Jiao Y, Wang J, et al. Spectrum inference in cognitive radio networks: algorithms and applications. IEEE Commun Surv Tutorials, 2018, 20: 150–182

    Article  Google Scholar 

  166. Xing X, Jing T, Cheng W, et al. Spectrum prediction in cognitive radio networks. IEEE Wireless Commun, 2013, 20: 90–96

    Article  Google Scholar 

  167. Zhang Y, Wu Y, Liu A, et al. Deep learning-based channel prediction for LEO satellite massive MIMO communication system. IEEE Wireless Commun Lett, 2021, 10: 1835–1839

    Article  Google Scholar 

  168. Ding X, Feng L, Zou Y, et al. Deep learning aided spectrum prediction for satellite communication systems. IEEE Trans Veh Technol, 2020, 69: 16314–16319

    Article  Google Scholar 

  169. Makhoul J. Linear prediction: a tutorial review. Proc IEEE, 1975, 63: 561–580

    Article  Google Scholar 

  170. Wen Z, Fan C, Zhang X, et al. A learning spectrum hole prediction model for cognitive radio systems. In: Proceedings of the 10th IEEE International Conference on Computer and Information Technology, 2010. 2089–2093

  171. Huang P, Liu C J, Yang X, et al. Wireless spectrum occupancy prediction based on partial periodic pattern mining. IEEE Trans Parallel Distrib Syst, 2014, 25: 1925–1934

    Article  Google Scholar 

  172. Nguyen V D, Shin O S. Cooperative prediction-and-sensing-based spectrum sharing in cognitive radio networks. IEEE Trans Cogn Commun Netw, 2018, 4: 108–120

    Article  Google Scholar 

  173. Ding G, Wu F, Wu Q, et al. Robust online spectrum prediction with incomplete and corrupted historical observations. IEEE Trans Veh Technol, 2017, 66: 8022–8036

    Article  Google Scholar 

  174. Chen X, Yang J, Ding G. Minimum Bayesian risk based robust spectrum prediction in the presence of sensing errors. IEEE Access, 2018, 6: 29611–29625

    Article  Google Scholar 

  175. Chen X, Yang J. A spectrum prediction-based frequency band pre-selection over deteriorating HF electromagnetic environment. China Commun, 2018, 15: 10–24

    Article  Google Scholar 

  176. Wen Z, Luo T, Xiang W, et al. Autoregressive spectrum hole prediction model for cognitive radio systems. In: Proceedings of IEEE International Conference on Communications Workshops, Beijing, 2008. 154–157

  177. Akbar I A, Tranter W H. Dynamic spectrum allocation in cognitive radio using hidden markov models: Poisson distributed case. In: Proceedings of IEEE SoutheastCon, Richmond, 2007. 196–201

  178. Chen Z, Qiu R C. Prediction of channel state for cognitive radio using higher-order hidden Markov model. In: Proceedings of the IEEE SoutheastCon 2010, Concord, 2010. 276–282

  179. Eltom H, Kandeepan S, Liang Y C, et al. Cooperative soft fusion for HMM-based spectrum occupancy prediction. IEEE Commun Lett, 2018, 22: 2144–2147

    Article  Google Scholar 

  180. Zhang S, Hu J, Bao Z, et al. Prediction of spectrum based on improved RBF neural network in cognitive radio. In: Proceedings of International Conference on Wireless Information Networks and Systems (WINSYS), Reykjavik, 2013. 1–5

  181. Lan K, Zhao H, Zhang J, et al. A spectrum prediction approach based on neural networks optimized by genetic algorithm in cognitive radio networks. In: Proceedings of the 10th International Conference on Wireless Communications, Networking and Mobile Computing (WiCOM 2014), Beijing, 2014. 131–136

  182. Zhang Y, Hou J, Towhidlou V, et al. A neural network prediction-based adaptive mode selection scheme in full-duplex cognitive networks. IEEE Trans Cogn Commun Netw, 2019, 5: 540–553

    Article  Google Scholar 

  183. Yu L, Chen J, Zhang Y, et al. Deep spectrum prediction in high frequency communication based on temporal-spectral residual network. China Commun, 2018, 15: 25–34

    Article  Google Scholar 

  184. Yu L, Guo Y, Wang Q, et al. Spectrum availability prediction for cognitive radio communications: a DCG approach. IEEE Trans Cogn Commun Netw, 2020, 6: 476–485

    Article  Google Scholar 

  185. Lin F, Chen J, Sun J, et al. Cross-band spectrum prediction based on deep transfer learning. China Commun, 2020, 17: 66–80

    Article  Google Scholar 

  186. Bischl H, Brandt H, de Cola T, et al. Adaptive coding and modulation for satellite broadband networks: from theory to practice. Int J Satell Commun Network, 2010, 28: 59–111

    Article  Google Scholar 

  187. Hayes J. Adaptive feedback communications. IEEE Trans Commun, 1968, 16: 29–34

    Article  Google Scholar 

  188. Webb W T, Steele R. Variable rate QAM for mobile radio. IEEE Trans Commun, 1995, 43: 2223–2230

    Article  Google Scholar 

  189. Qiu X X, Chawla K. On the performance of adaptive modulation in cellular systems. IEEE Trans Commun, 1999, 47: 884–895

    Article  Google Scholar 

  190. Morello A, Mignone V. DVB-S2: the second generation standard for satellite broad-band services. Proc IEEE, 2006, 94: 210–227

    Article  Google Scholar 

  191. Rinaldo R, Gaudenzi R D. Capacity analysis and system optimization for the forward link of multi-beam satellite broadband systems exploiting adaptive coding and modulation. Int J Satell Commun Network, 2004, 22: 401–423

    Article  Google Scholar 

  192. Ahn S K, Yang K. Adaptive modulation and coding schemes based on LDPC codes with irregular modulation. IEEE Trans Commun, 2010, 58: 2465–2470

    Article  Google Scholar 

  193. Tropea M, de Rango F, Santamaria A F. Design of a two-stage scheduling scheme for DVB-S2/S2X satellite architecture. IEEE Trans Broadcast, 2021, 67: 424–437

    Article  Google Scholar 

  194. Pauluzzi D R, Beaulieu N C. A comparison of SNR estimation techniques for the AWGN channel. IEEE Trans Commun, 2000, 48: 1681–1691

    Article  Google Scholar 

  195. Weerackody V. Adaptive coding and modulation for satellite communication links in the presence of channel estimation errors. In: Proceedings of IEEE Military Communications Conference, Diego, 2013. 622–627

  196. Yu X, Wang S. Adaptive information transmission scheme for LEO satellite based on Ka band. Comput Sci, 2019, 46: 72–79

    Google Scholar 

  197. Wan L, Zhou H, Xu X, et al. Adaptive modulation and coding for underwater acoustic OFDM. IEEE J Ocean Eng, 2015, 40: 327–336

    Article  Google Scholar 

  198. Zeng R, Liu T, Yu X T, et al. Novel channel quality indicator prediction scheme for adaptive modulation and coding in high mobility environments. IEEE Access, 2019, 7: 11543–11553

    Article  Google Scholar 

  199. Meng J, Yang E H. Constellation and rate selection in adaptive modulation and coding based on finite blocklength analysis and its application to LTE. IEEE Trans Wireless Commun, 2014, 13: 5496–5508

    Article  Google Scholar 

  200. Farrokh A, Krishnamurthy V, Schober R. Optimal adaptive modulation and coding with switching costs. IEEE Trans Commun, 2009, 57: 697–706

    Article  Google Scholar 

  201. Kojima S, Maruta K, Ahn C J. Throughput maximization by adaptive switching with modulation coding scheme and frequency symbol spreading. JCOMSS, 2018, 14: 332–339

    Article  Google Scholar 

  202. Zheng Y, Ren S, Xu X, et al. A modified ARIMA model for CQI prediction in LTE-based mobile satellite communications. In: Proceedings of IEEE International Conference on Information Science and Technology, Wuhan, 2012. 822–826

  203. Elwekeil M, Jiang S, Wang T, et al. Deep convolutional neural networks for link adaptations in MIMO-OFDM wireless systems. IEEE Wireless Commun Lett, 2019, 8: 665–668

    Article  Google Scholar 

  204. Ferreira P V R, Paffenroth R, Wyglinski A M, et al. Multiobjective reinforcement learning for cognitive satellite communications using deep neural network ensembles. IEEE J Sel Areas Commun, 2018, 36: 1030–1041

    Article  Google Scholar 

  205. AbdelMoniem M, Gasser S M, El-Mahallawy M S, et al. Enhanced NOMA system using adaptive coding and modulation based on LSTM neural network channel estimation. Appl Sci, 2019, 9: 3022

    Article  Google Scholar 

  206. Kojima S, Maruta K, Ahn C J. Adaptive modulation and coding using neural network based SNR estimation. IEEE Access, 2019, 7: 183545–183553

    Article  Google Scholar 

  207. Tato A, Mosquera C, Henarejos P, et al. Neural network aided computation of mutual information for adaptation of spatial modulation. IEEE Trans Commun, 2020, 68: 2809–2822

    Article  Google Scholar 

  208. Zhang L, Tan J, Liang Y C, et al. Deep reinforcement learning-based modulation and coding scheme selection in cognitive heterogeneous networks. IEEE Trans Wireless Commun, 2019, 18: 3281–3294

    Article  Google Scholar 

  209. Zhang L, Wu Z. Machine Learning—Based Adaptive Modulation and Coding Design. Piscataway: Wiley-IEEE Press, 2020. 157–180

    Google Scholar 

  210. Gruber T, Cammerer S, Hoydis J, et al. On deep learning-based channel decoding. In: Proceedings of the 51st Annual Conference on Information Sciences and Systems (CISS), Baltimore, 2017. 1–6

  211. Wang X, Li H, Wu Q. Optimizing adaptive coding and modulation for satellite network with ML-based CSI prediction. In: Proceedings of IEEE Wireless Communications and Networking Conference (WCNC), Shenzhen, 2019. 1–6

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 44562101050, 62001022, U1836201, 61971038).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Zeng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, K., Liu, H., Zeng, L. et al. Applications and prospects of artificial intelligence in covert satellite communication: a review. Sci. China Inf. Sci. 66, 121301 (2023). https://doi.org/10.1007/s11432-022-3566-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-022-3566-4

Keywords

Navigation