Abstract
The Maximum Agreement Forest (MAF) problem on two given phylogenetic trees is an important NP-hard problem in the field of computational biology. In this paper, we study the parameterized version of the MAF problem: given two unrooted (multifurcating) phylogenetic trees T 1 and T 2 with the same leaf-label set L, and a parameter k, either construct an agreement forest of at most k trees for T 1 and T 2, or report that no such a forest exists. Whether there is a fixed-parameter tractable algorithm for this problem was posed as an open problem several times in the literature. In this paper, we resolve this open problem by presenting a parameterized algorithm of running time O(4k n 5) for the problem.
创新点
两棵系统发生树的最大一致森林问题在计算生物学领域中是一个非常重要的NP难解问题。本文对参数化的最大一致森林问题进行了研究:给定两棵拥有相同叶子标签集合的无根多叉系统发生树T1和T2,以及一个参数k,问T1和T2是否存在一个一致森林,其包含的树的棵数不超过k,如存在请返回这样的一个一致森林,如不存在请回答不存在。在相关文献中,此问题是否固定参数可解作为开放性问题被提出。本文对该问题提出了一个时间复杂度为O(4^k n^5)的参数算法,证明了此问题是固定参数可解的。
We’re sorry, something doesn't seem to be working properly.
Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.
References
Hillis D M. Predictive evolution. Science, 1999, 286: 1866–1867
Ding Z, Filkov V, Gusfield D. A linear-time algorithm for the perfect phylogeny haplotyping (PPH) problem. In: Proceedings of 9th Annual International Conference of Research in Computational Molecular Biology (RECOMB 2005), Cambridge, 2005. 585–600
Warnow T, Ringe D, Taylor A. Reconstructing the evolutionary history of natural languages. In: Proceedings of 7th ACM-SIAM Symposium on Discrete Algorithms (SODA 1996), Atlanta, 1996. 314–322
Robinson D F, Foulds L R. Comparison of phylogenetic trees. Math Biosci, 1981, 53: 131–147
Li M, Tromp J, Zhang L. On the nearest neighbour interchange distance between evolutionary trees. J Theor Biol, 1996, 182: 463–467
Das Gupta B, He X, Jiang T, et al. On distances between phylogenetic trees. In: Proceedings of 8th ACM-SIAM Symposium of Discrete Algorithms (SODA 1997), New Orleans, 1997. 427–436
Swofford D, Olsen G, Waddell P, et al Phylogenetic inference. In: Hillis D, Moritz C, Mable B, eds. Molecular Systematics. 2nd ed. Sunderland: Sinauer Associates, 1996. 407–513
Hein J, Jiang T, Wang L, et al. On the complexity of comparing evolutionary trees. Discrete Appl Math, 1996, 71: 153–169
Allen B L, Steel M. Subtree transfer operations and their induced metrics on evolutionary trees. Ann Comb, 2001, 5: 1–15
Bordewich M, Semple C. On the computational complexity of the rooted subtree prune and regraft distance. Ann Comb, 2005, 8: 409–423
Hickey G, Dehne F, Rau-Chaplin A, et al. SPR distance computation for unrooted trees. Evol Bioinform Online, 2008, 4: 17
Baroni M, Grnewald S, Moulton V, et al. Bounding the number of hybridisation events for a consistent evolutionary history. J Math Biol, 2005, 51: 171–182
Chen J E, Feng Q L. On unknown small subsets and implicit measures: new techniques for parameterized algorithms. J Comput Sci Technol, 2014, 29: 870–878
Feng Q L, Wang J X, Li S H, et al. Randomized parameterized algorithms for P2-Packing and Co-Path Packing problems. J Comb Optim, 2015, 29: 125–140
Feng Q L, Wang J X, Chen J E. Matching and weighted P2-Packing: algorithms and kernels. Theor Comput Sci, 2014, 522: 85–94
Feng Q L, Wang J X, Xu C, et al. Improved parameterized algorithms for minimum link-length rectilinear spanning path problem. Theor Comput Sci, 2014, 560: 158–171
Wang J X, Tan P Q, Yao J Y, et al. On the minimum link-length rectilinear spanning path problem: complexity and algorithms. IEEE Trans Comput, 2014, 63: 3092–3100
Wang J X, Li W J, Li S H, et al. On the parameterized vertex cover problem for graphs with perfect matching. Sci China Inf Sci, 2014, 57: 072107
Downy R, Fellows M. Parameterized Complexity. New York: Springer-Verlag, 1999
Hallett M, Mccartin C. A faster FPT algorithm for the maximum agreement forest problem. Theory Comput Syst, 2007, 41: 539–550
Whidden C, Zeh N. A Unifying View on Approximation and FPT of Agreement Forests. Berlin/Heidelberg: Springer, 2009
Linz S, Semple C. Hybridization in nonbinary trees. IEEE/ACM Trans Comput Biol Bioinform, 2009, 6: 30–45
Whidden C, Beiko R G, Zeh N. Fixed-parameter and approximation algorithms for maximum agreement forests. arXiv preprint, arXiv:1108.2664, 2011
Paun O, Lehnebach C, Johansson J T, et al. Phylogenetic relationships and biogeography of Ranunculus and allied genera (Ranunculaceae) in the Mediterranean region and in the European alpine system. Taxon, 2005, 54: 911–932
Willyard A, Wallace L E, Wagner W L, et al. Estimating the species tree for Hawaiian Schiedea (Caryophyllaceae) from multiple loci in the presence of reticulate evolution. Mol Phylogenet Evol, 2011, 60: 29–48
Maddison W. Reconstructing character evolution on polytomous cladograms. Cladistics, 1989, 5: 365–377
Whelan S, Money D. The prevalence of multifurcations in tree-space and their implications for tree-search. Mol Biol Evol, 2010, 27: 2674–2677
Beiko R G, Hamilton N. Phylogenetic identification of lateral genetic transfer events. BMC Evol Biol, 2006, 6: 15
Rodrigues E M, Sagot M F, Wakabayashi Y. The maximum agreement forest problem: approximation algorithms and computational experiments. Theor Comput Sci, 2007, 374: 91–110
Buneman P. The recovery of trees from measures of issimilarity. In: Hodson F, Kendall D, Tauta P, eds. Mathematics in the Archaeological and Historical Sciences. Edinburgh: Edinburgh University Press, 1971. 387–395
Chen J E, Fan J H, Sze S H. Parameterized and approximation algorithms for maximum agreement forest in multifurcating trees. Theor Comput Sci, 2015, 562: 496–512
Shi F, Wang J, Chen J E, et al. Algorithms for parameterized maximum agreement forest problem on multiple trees. Theor Comput Sci, 2014, 554: 207–216
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Shi, F., Wang, J., Yang, Y. et al. A fixed-parameter algorithm for the maximum agreement forest problem on multifurcating trees. Sci. China Inf. Sci. 59, 1–14 (2016). https://doi.org/10.1007/s11432-015-5355-1
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11432-015-5355-1
Keywords
- computational biology
- multifurcating phylogenetic tree
- maximum agreement forest
- TBR distance
- fixed-parameter algorithm