Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Fast inverse covariance matrix computation based on element-order recursive method for space-time adaptive processing

基于阵元阶数递推的快速协方差矩阵求逆STAP算法

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Because of large computational complexity in the inverse space-time covariance matrix computation, the conventional space-time adaptive processing (STAP) is unsuitable for practical implementation. According to the block Hermitian matrix property of covariance matrix, a new element-order recursive method is proposed in this paper to calculate the inverse space-time covariance matrix for STAP weight vector. In the proposed method, the inverse space-time covariance matrix of first element-order is initially calculated recursively based on block Hermitian matrix property, and then the inverse space-time covariance matrix of high element-order is correspondingly deduced recursively based on obtained inverse covariance matrix of previous element-order. Finally, STAP weight vector is calculated based on the final inverse covariance matrix. Afterwards, a modified reduced-dimension STAP method is derived by combining the proposed method with the m-Doppler Transformation (mDT-SAP) STAP approach. Based on the simulated and the actual airborne phased array radar data, the proposed method verified that the computational complexity is much smaller than conventional STAP methods. The proposed element-order recursive method for STAP is applicable for practical airborne phased radar system.

摘要

主要创新点

由于空时协方差矩阵求逆存在巨大的运算复杂度, 传统空时自适应处理(STAP)技术难以满足目前技术水平下系统实时性的要求。 本文根据空时协方差矩阵为Hermitian矩阵, 能利用阵元分块递推的特性, 提出基于阵元阶数递推计算空时协方差矩阵逆的STAP算法。 本方法首先根据分块Hermitian矩阵性质, 递推得到第1个阵元的协方差逆矩阵, 然后按照阵元阶数逐级递推得到最终的空时协方差逆矩阵, 进而得到STAP自适应权值。 同时, 本方法还可以有效地与m多普勒邻域(mDT-SAP)等降维STAP算法结合使用。 仿真与实测数据处理结果表明, 本方法在极大降低计算复杂度的同时, 能够获得和直接协方差矩阵求逆STAP算法同样的杂波抑制性能。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ward J. Space-time adaptive processing for airborne radar. Technical Report 1015, Lincoln Laboratory MIT, 1994

    Google Scholar 

  2. Guerci J R. Space-Time Adaptive Processing for Radar. Artech House, 2003

    Google Scholar 

  3. Reed I S, Mallet J D, Brennan L E. Rapid convergence rate in adaptive arrays. IEEE Trans Aerosp Electron Syst, 1974, 10: 853–863

    Article  Google Scholar 

  4. Melvin W L. Space-time adaptive radar performance in heterogeneous clutter. IEEE Trans Aerosp Electron Syst, 2000, 36: 621–633

    Article  Google Scholar 

  5. Wang Y L, Peng Y N, Bao Z. Space-time adaptive processing for airborne radar with various array orientation. IET Radar Sonar Navig, 1997, 144: 330–340

    Article  Google Scholar 

  6. Zhang W, He Z, Li J. A method for finding best channels in beam-space post-Doppler reduced-dimension STAP. IEEE Trans Aerosp Electron Syst, 2013, 50: 254–264

    Article  Google Scholar 

  7. Liao G S, Bao Z, Zhang Y H. A partial adaptive spatial-temporal processing for airborne radars. J Electron, 1993, 15: 570–580

    Google Scholar 

  8. Fa R, de Lamare R C. Reduced rank STAP algorithms using joint iterative optimization of filters. IEEE Trans Aerosp Electron Syst, 2011, 47: 1668–1684

    Article  Google Scholar 

  9. Goldstein J S, Reed I S, Zulc P A. Multistage partially adaptive STAP CFAR detection algorithm. IEEE Trans Aerosp Electron Syst, 1999, 35: 645–661

    Article  Google Scholar 

  10. Liu W J, Xie W C, Wang Y L. Adaptive detectors in the Krylov subspace. Sci China Inf Sci, 2014, 57: 102310

    MathSciNet  Google Scholar 

  11. Wang Y L, Liu W J, Xie W C. Reduced-rank space-time adaptive detection for airborne radar. Sci China Inf Sci, 2014, 57: 082310

    Google Scholar 

  12. Ma Lei, Dickson K, McAllister J, et al. QR decomposition-based matrix inversion for high performance embedded MIMO receiver. IEEE Trans Signal Process, 2011, 59: 1858–1867

    Article  Google Scholar 

  13. Xiong J, Liao L, Wu S. Recursive algorithm of adaptive weight extraction of space-time signal processing for airborne radar. In: Proceedings of CIE International Conference of Radar, Beijing, 1996. 86–90

    Chapter  Google Scholar 

  14. Cao J, Wang X. Diagonally loaded SMI algorithm based on inverse matrix recursion. J Syst Eng Electron, 2007, 18: 160–163

    Article  Google Scholar 

  15. Cao J, Wang X. New recursive algorithm for matrix inversion. J Syst Eng Electron, 2008, 19: 381–384

    Article  MATH  Google Scholar 

  16. Beau S, Marcos S. Range dependent clutter rejection using range-recursive space-time adaptive processing algorithms. Signal Process, 2010, 90: 57–68

    Article  MATH  Google Scholar 

  17. Yang X P, Liu Y X, Long T. A pulse-order recursive method for inverse covariance matrix computation applied to space-time adaptive processing. Sci China Inf Sci, 2013, 56: 042312

    MathSciNet  Google Scholar 

  18. Manolakis D G, Ingle K V, Kogon S M. Statistical and Adaptive Signal Processing. McGraw-Hill, 2000

    Google Scholar 

  19. Gao F, Wang Y L, Chen H. Study on matrix inversion for STAP. Radar Sci Technol, 2008, 6: 215–218

    MathSciNet  Google Scholar 

  20. Golub G H, van Loan C F. Matrix Computations. Baltimore: Johns Hopkins University Press, 1996

    MATH  Google Scholar 

  21. Bollini P, Chisci L, Farina A. QR versus IQR algorithms for adaptive signal processing: performance evaluation for radar applications. Proc IEE Radar Sonar Navig, 1996, 143: 328–340

    Article  Google Scholar 

  22. Krishnamoorthy A, Menon D. Matrix inversion using Cholesky decomposition. In: Proceedings of Signal Processing: Algorithms, Architectures and Applications (SPA), Poznan, 2013. 70–72

    Google Scholar 

  23. Carlson B D. Covariance matrix estimation errors and diagonal loading in adaptive arrays. IEEE Trans Aerosp Electron Syst, 1998, 24: 397–401

    Article  Google Scholar 

  24. Barham H. MCARM/STAP data analysis. Final Technical Report AFRL-IF-TR-1999-48, Air Force Research Laboratory, 1999

    Google Scholar 

  25. Dong Y. Approximate invariance of the inverse of the covariance matrix and the resultant pre-built STAP processor. Research Report DSTO-RR-0291, Defense Science and Technology Organization, Australia, 2005

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiaoPeng Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Sun, Y., Liu, Y. et al. Fast inverse covariance matrix computation based on element-order recursive method for space-time adaptive processing. Sci. China Inf. Sci. 58, 1–14 (2015). https://doi.org/10.1007/s11432-014-5250-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-014-5250-1

Keywords

关键词

Navigation