Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Towards evolvable Internet architecture-design constraints and models analysis

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

There is a general consensus about the success of Internet architecture in academia and industry. However, with the development of diversified application, the existing Internet architecture is facing more and more challenges in scalability, security, mobility and performance. A novel evolvable Internet architecture framework is proposed in this paper to meet the continuous changing application requirements. The basic idea of evolvability is relaxing the constraints that limit the development of the architecture while adhering to the core design principles of the Internet. Three important design constraints used to ensure the construction of the evolvable architecture, including the evolvability constraint, the economic adaptability constraint and the manageability constraint, are comprehensively described. We consider that the evolvable architecture can be developed from the network layer under these design constraints. What’s more, we believe that the address system is the foundation of the Internet. Therefore, we propose a general address platform which provides a more open and efficient network environment for the research and development of the evolvable architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tanenbaum A S, Wetherall D J. Computer Networks, 5th ed. New Jersey: Prentice-Hall, 2010

    Google Scholar 

  2. Cerf V G, Kahn R E. A protocol for packet network interconnection. IEEE Trans Comm, 1974, COM-22: 627–641

    Google Scholar 

  3. Rexford J, Dovrolis C. Future internet architecture: Clean-slate versus evolutionary research. CACM, 2010, 53: 36–40

    Article  Google Scholar 

  4. Pan J, Paul S, Jain R. A survey of the research on future internet Architectures. IEEE Comm Mag, 2011, 49: 26–36

    Article  Google Scholar 

  5. Koponen T, Shenker S, Balakrishnan H, et al. Architecting for innovation. ACM SIGCOMM CCR, 2011, 41: 24–36

    Article  Google Scholar 

  6. Anand A, Dogar F, Han D, et al. XIA: An architecture for an evolvable and trustworthy Internet. In: Proc HotNets, Cambridge, Massachusetts, USA. New York: ACM Press, 2011. No. 2)

    Google Scholar 

  7. Ghodsi A, Shenker S, Koponen T, et al. Intelligent design enables architectural evolution. In: Proc HotNets, Cambridge, Massachusetts, USA. New York: ACM Press, 2011. No. 3)

    Google Scholar 

  8. Andersen D G, Balakrishnan H, Feamster N, et al. Accountable internet protocol (AIP). ACM SIGCOMM CCR, 2008, 38: 339–350

    Article  Google Scholar 

  9. Moskowitz R, Nikander P, Jokela P, et al. Host identity protocol. RFC 5201, 2008

    Google Scholar 

  10. Jacobson V, Smetters D K, Thornton J D, et al. Networking named content. In: Proc CoNEXT, Rome, Italy. New York: ACM Press, 2009. 1–12

    Chapter  Google Scholar 

  11. Zhang L X, Estrin D, Burke J, et al. Named data networking (NDN) project. PARC Technical Report NDN-0001, Palo Alto, California, 2010

    Google Scholar 

  12. Koponen T, Chawla M, Chun B G, et al. A data-oriented (and Beyond) network architecture. ACM SIGCOMM CCR, 2007, 37: 181–192

    Article  Google Scholar 

  13. Balakrishnan H, Lakshminarayanan K, Ratnasamy S, et al. A layered naming architecture for the internet. In: Proc ACM SIGCOMM, Portland, Oregon. New York: ACM Press, 2004. 343–352

    Google Scholar 

  14. Jung H Y, Koh S J. Mobile-oriented future internet (MOFI): Architecture and protocols (Release 1.2). Electronics and Telecommunications Research Institute (ETRI), 2010

    Google Scholar 

  15. Shin M K, Nam K H, Kang M, et al. Formal Specification Framework for Software-Defined Networks (SDN). IETF draft-shin-sdn-formal-specification-03, 2013

    Google Scholar 

  16. Blumenthal M S, Clark D D. Rethinking the design of the Internet: The end-to-end arguments vs. the brave new world. TOIT, 2001, 1: 70–109

    Article  Google Scholar 

  17. Wu J P, Liu Y, Wu Q. Theoretical research progress in new-generation Internet architecture. Sci China-Ser F: Info Sci, 2008, 51: 1634–1660

    Article  Google Scholar 

  18. Xu K, Xu M W, Li Q, et al. Analysis and case study on multi-dimensional scalability of Internet architecture. Sci China-Ser F: Info Sci, 2008, 51: 1661–1680

    Article  Google Scholar 

  19. Hu G W, Xu K, Wu J P, et al. A general framework of source address validation and traceback for IPv4/IPv6 transition scenarios. IEEE Network, 2013, 27: 66–73

    Article  Google Scholar 

  20. Xu K, Liu H Y, Liu J C, et al. LBMP: A logarithm-barrier-based multipath protocol for Internet traffic management. IEEE TPDS, 2011, 22: 476–488

    Google Scholar 

  21. Xu K, Liu H Y, Liu J C, et al. One more weight is enough: Toward the optimal traffic engineering with OSPF. In: Proc IEEE ICDCS Minneapolis, USA. Washington, DC: IEEE Computer Society, 2011. 836–846

    Google Scholar 

  22. Wu J P, Lin S, Xu K, et al. Advances in evolvable new generation internet architecture research (in Chinese). Chin J Comp, 2012, 35: 1094–1108

    Google Scholar 

  23. McKeown N, Anderson T, Balakrishnan H, et al. OpenFlow: Enabling innovation in campus networks. ACM SIGCOMM CCR, 2008, 38: 69–74

    Article  Google Scholar 

  24. Clark D D. The design philosophy of the DARPA Internet protocols. ACM SIGCOMM CCR, 1995, 25: 102–111

    Article  Google Scholar 

  25. Kurose J. Networking: Successes, new challenges, and an expanding waist, as the field approaches 40. IEEE Infocom 2004 Keynote Talk, 2004

    Google Scholar 

  26. Aura T. Cryptographically generated addresses (CGA). RFC 3972. 2005

    Google Scholar 

  27. Xiang Y, Yin X, Wang Z L, et al. Internet flattening: Monitoring and analysis of inter-domain routing. In: Proc IEEE ICC, Kyoto. New York: IEEE Press, 2011. 1–6

    Google Scholar 

  28. Li Q, Wang D, Xu M W, et al. On the scalability of router forwarding tables: Nexthop-selectable FIB aggregation. In: Proc IEEE INFOCOM, Shanghai. Washington, DC: IEEE Computer Society, 2011. 321–325

    Google Scholar 

  29. Zhang W G, Yin X, Wu J P, et al. Real aggregation for reducing routing information base size. JCIT, 2010, 5: 47–53

    Article  Google Scholar 

  30. Xu M W, Yang S, Wang D, et al. Two dimensional-IP routing. In: Proc ICNC, San Diego, 2013. 835–839

    Google Scholar 

  31. Li D, Li Y J, Wu J P. ESM: Efficient and scalable data center multicast routing. IEEE/ACM Trans Networking, 2012, 20: 944–955

    Article  Google Scholar 

  32. Xiang Y, Shi X G, Wu J P, et al. Sign what you really care about-secure BGP AS paths efficiently. Comp Netw, 2013, 57: 2250–2265

    Article  Google Scholar 

  33. Yao G, Bi J, Xiao P Y. VASE: Filtering IP spoofing traffic with agility. Comp Networks (Elsevier), 2013, 57: 243–257

    Article  Google Scholar 

  34. Wu P, Cui Y, Wu J P, et al. Transition from IPv4 to IPv6: A state-of-the-art survey. IEEE Comm Surveys Tutor, 2012, 15: 1407–1424

    Article  Google Scholar 

  35. Cui Y, Dong J, Wu P, et al. Tunnel-based IPv6 transition. IEEE Internet Comp, 2012, 17: 62–68

    Google Scholar 

  36. Chen Z J, Zhao Y, Lin C, et al. Accelerating large-scale data distribution in booming Internet: Effectiveness, bottlenecks and practices. IEEE Trans Consum Electr, 2009, 55: 518–526

    Article  Google Scholar 

  37. Ma Z, Xu K, Liu J C, et al. Measurement, modeling and enhancement of BitTorrent-based VoD system. Comp Netw, 2012, 56: 1103–1117

    Article  Google Scholar 

  38. Lei L, Lin C, Cai J, et al. Performance analysis of wireless opportunistic schedulers using stochastic Petri Nets. IEEE Trans Wirel Comm, 2009, 8: 2076–2087

    Article  Google Scholar 

  39. Huang B, Sun Z G, Chen H, et al. BufferBank: A distributed cache infrastructure for peer-to-peer application. Peer-to-peer Netw Appl, 2012. 1–12

    Google Scholar 

  40. Xu K, Zhu M, Lin C. Internet architecture evaluation models, mechanisms, and methods (in Chinese). Chin J Comp, 2012, 35: 1–22

    Article  Google Scholar 

  41. Xu K, Zhu M, Wang N, et al. The 2ACT model-based evaluation for in-network caching mechanism. In: Proc IEEE symposium on Computers and Communications (ISCC), Split, Croatia. 2013

    Google Scholar 

  42. Wolf T, Griffioen J, Calvert K L, et al. Choice as a principle in network architecture. ACM SIGCOMM CCR, 2012, 42: 105–106

    Article  Google Scholar 

  43. He H, Xu K, Liu Y. Internet resource pricing models, mechanisms, and methods. Netw Sci, 2012, 1: 48–66

    Article  Google Scholar 

  44. Xu K, Zhong Y F, He H. Internet Resource Pricing Models. New York: Springer-Verlag. 2013

    Google Scholar 

  45. Shi X L, Xu K, Wang H Y, et al. Online combinatorial double auction for mobile cloud computing markets. Technical Report. Beijing, China: http://www.thucsnet.org/uploads/2/5/2/8/25289795/auction.pdf

  46. Wu J P, Bi J. Source Address Validation Improvement Framework. Draft-ietf-savi-framework-06, 2011

    Google Scholar 

  47. Wu J P, Ren G, Li X. Source address validation: Architecture and protocol design. In: Proc IEEE ICNP, Beijing. New York: IEEE Press, 2007. 276–283

    Google Scholar 

  48. Hu G W, Wu J P, Xu K et al. SAVT: A practical scheme for source address validation and traceback in campus network. In: Proc IEEE ICCCN, Maui, Hawaii. New York: IEEE Press, 2011. 1–8

    Google Scholar 

  49. Bi J, Liu B Y, Wu J P, et al. Preventing IP source address spoofing: A two-level, state machine-based method. Tsinghua Sci Tech, 2009, 4: 413–422

    Article  Google Scholar 

  50. Choi J, Park C, Jung H, et al. Addressing in future internet: Problems, issues, and approaches. In: Proc 3rd International CFI, 2008

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, K., Zhu, M., Hu, G. et al. Towards evolvable Internet architecture-design constraints and models analysis. Sci. China Inf. Sci. 57, 1–24 (2014). https://doi.org/10.1007/s11432-014-5134-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-014-5134-4

Keywords

Navigation