Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Neighboring optimal control for periodic tasks for systems with discontinuous dynamics

  • Research Papers
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

We propose a trajectory-based optimal control method for periodic tasks for systems with discontinuous dynamics. A general method, dynamic programming, suffers from the problem of dimensionality. We use local models of the optimal control law to construct a local controller. We combine a parametric trajectory optimization method and differential dynamic programming (DDP) to find the optimal periodic trajectory in a periodic task. By formulating the optimal control problem with an infinite time horizon, DDP generates time-invariant local models of the optimal control law. For DDP, the value function at dynamics discontinuities is approximated by a second order Taylor series. The utility of the proposed method is evaluated using simulated walking control of a five-link biped robot. The results show lower torques and more robustness from the proposed controller than a PD servo controller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bellman R. Dynamic Programming. Princeton, NJ: Princeton Univ. Press, 1957

    MATH  Google Scholar 

  2. Larson R E. State Increment Dynamic Programming. New York: American Elsevier Pub. Co., 1968

    MATH  Google Scholar 

  3. Dyer P, McReynolds S R. The Computation and Theory of Optimal Control. San Diego, CA: Academic Press, 1970

    MATH  Google Scholar 

  4. Jacobson D H, Mayne D Q. Differential dynamic programming. In: Modern Analytic and Computational Methods in Science and Mathematics, No. 24. Elsevier, 1970

  5. Betts J T. Practical Methods for Optimal Control Using Nonlinear Programming. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2001

    MATH  Google Scholar 

  6. Hargraves C R, Paris S W. Direct trajectory optimization using nonlinear programming and collocation. J Guid Control Dyn, 1987, 10: 338–342

    Article  MATH  Google Scholar 

  7. Gill P E, Murray W, Saunders M A. SNOPT: An SQP algorithm for large-scale constrained optimization. SIAM J Opt, 1997, 12: 979–1006

    Article  MathSciNet  Google Scholar 

  8. Stolle M, Atkeson C G. Policies based on trajectory libraries. In: Proc. Int. Conf. Robot. Autom., Orlando, FL, USA, 2006. 3344–3349

  9. Tassa Y, Erez T, Smart W. Receding horizon differential dynamic programming. In: Advances in Neural Information Processing Systems. Cambridge, MA: MIT Press, 2008, 20: 1465–1472

    Google Scholar 

  10. Grossman R L, Valsamis D, Qin X. Persistent stores and hybrid systems. In: Proc. Int. Conf. Decision and Control, New York, NY, USA, 1993. 2298–2302

  11. Schierman J, Ward D, Hull J, et al. Integrated adaptive guidance and control for re-entry vehicles with flight test results. J Guid Control Dyn, 2004, 27: 975–988

    Article  Google Scholar 

  12. Frazzoli E, Dahleh M, Feron E. Maneuver-based motion planning for nonlinear systems with symmetries. IEEE Trans Robot, 2005, 21: 1077–1091

    Article  Google Scholar 

  13. Stolle M, Tappeiner H, Chestnutt J, et al. Transfer of policies based on trajectory libraries. In: Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst, New York, NY, USA, 2007. 2981–2986

  14. Safonova A, Hodgins J K. Construction and optimal search of interpolated motion graphs. ACM Trans Graph, 2007, 26: 106

    Article  Google Scholar 

  15. Tedrake R, Manchester I R, Tobenkin M, et al. LQR-trees: Feedback motion planning via sums-of-squares Verification. Int J Rob Res, 2010, 29: 1038–1052

    Article  Google Scholar 

  16. Atkeson C G. Using local trajectory optimizers to speed up global optimization in dynamic programming. In: Cowan J D, Tesauro G, Alspector J, eds. Advances in Neural Information Processing Systems. San Fransisco, CA: Morgan Kaufmann Publishers, Inc., 1994, 6: 663–670

    Google Scholar 

  17. Atkeson C G, Morimoto J. Nonparametric representation of policies and value functions: a trajectory-based approach. In: Advances in Neural Information Processing Systems. Cambridge, MA: MIT Press, 2003. 1643–1650

    Google Scholar 

  18. Vukobratović M, Borovac B, Surla D, et al. Biped locomotion: dynamics, stability, control and application. In: Scientific Fundamentals of Robotics. Berlin: Springer, 1990

    Google Scholar 

  19. Hirai K, Hirose M, Haikawa Y, et al. The development of Honda humanoid robot. In: Proc Int Conf Robot Autom, Leuven, Belgium, 1998, 2: 1321–1326

  20. Huang Q, Yokoi K, Kajita S, et al. Planning walking patterns for a biped robot. IEEE Trans Robot Autom, 2001, 17: 280–289

    Article  Google Scholar 

  21. Kajita S, Tani K. Experimental study of biped dynamic walking. IEEE Control Syst Mag, 1996, 16: 13–19

    Article  Google Scholar 

  22. Djoudi D, Chevallereau C, Aoustin Y. Optimal reference motions for walking of a biped robot. In: Proc. Int. Conf. Robot. Autom., New York, NY, USA, 2005. 2002–2007

  23. Bessonnet G, Seguin P, Sardain P. A parametric optimization approach to walking pattern synthesis. Int J Rob Res, 2005, 24: 523–536

    Article  Google Scholar 

  24. Chevallereau C, Djoudi D, Grizzle J. Stable bipedal walking with foot rotation through direct regulation of the zero moment point. IEEE Trans Robot, 2008, 24: 390–401

    Article  Google Scholar 

  25. Loffler K, Gienger M, Pfeiffer F, et al. Sensors and control concept of a biped robot. IEEE Trans Indust Electr, 2004, 51: 972–980

    Article  Google Scholar 

  26. Westervelt E R, Grizzle J W, Koditschek D E. Hybrid zero dynamics of planar biped walkers. IEEE Trans Autom Contr, 2003, 48: 42–56

    Article  MathSciNet  Google Scholar 

  27. Raibert M H. Legged robots. Commun ACM, 1986, 29: 499–514

    Article  MATH  Google Scholar 

  28. Pratt J, Pratt G. Intuitive control of a planar bipedal walking robot. In: Proc. IEEE Int. Conf. Robot. Autom., New York, NY, USA, 1998. 2014–2021

  29. Dimitrov D, Ferreau H J, Wieber P B, et al. On the implementation of model predictive control for on-line walking pattern generation. In: Proc. IEEE Int. Conf. Robot. Autom., Pasadena, CA, USA, 2008. 2685–2690

  30. Whitman E, Atkeson C G. Control of a walking biped using a combination of simple policies. In: Proc. Int. Conf. Humanoid Robots, Paris, 2009. 520-527

  31. Moore M, Wilhelms J. Collision detection and response for computer animation. Comput Graph, 1988, 22: 289–298

    Google Scholar 

  32. Liu C G, Atkeson C G. Standing balance control using a trajectory library. In: Proc. Int. Conf. Intell. Robots Syst., St. Louis, 2009. 3031–3036

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ChengGang Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, C., Atkeson, C.G. & Su, J. Neighboring optimal control for periodic tasks for systems with discontinuous dynamics. Sci. China Inf. Sci. 54, 653–663 (2011). https://doi.org/10.1007/s11432-011-4185-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-011-4185-z

Keywords

Navigation