Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Analysis of spatial distribution and multi-year trend of the remotely sensed soil moisture on the Tibetan Plateau

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Long-term highly accurate surface soil moisture data of TP (Tibetan Plateau) are important to the research of Asian monsoon and global atmospheric circulation. However, due to the sparse in-situ networks, the lack of soil moisture observations has seriously hindered the progress of climate change researches of TP. Based on the Dual-Channel soil moisture retrieval algorithm and the satellite observation data of AMSR-E (Advanced Microwave Scanning Radiometer for EOS), we have produced the surface soil moisture data of TP from 2003 to 2010 and analyzed the seasonal characteristic of the soil moisture spatial distribution and its multi-year changing trend in area of TP. Compared to the in-situ observations, the accuracy of the soil moisture retrieved by the proposed algorithm is evaluated. The evaluation result shows that the new soil moisture product has a better accuracy in the TP region than the official product of AMSR-E. The spatial distribution of the annual mean values of soil moisture and the seasonal variations of the monthly-averaged soil moisture are analyzed. The results show that the soil moisture variations in space and time are consistent with the precipitation distribution and the water vapor transmission path in TP. Based on the new soil moisture product, we also analyzed the spatial distribution of the changing trend of multi-year soil moisture in TP. From the comparisons with the precipitation changing trend obtained from the meteorological observation sites in TP, we found that the spatial pattern of the changing trend of soil moisture coincides with the precipitation as a whole.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balsamo G, Viterbo P, Beljaars A, et al. 2009. A revised hydrology for the ECMWF model: Verification from field site to terrestrial water storage and impact in the integrated forecast system. J Hydrometeorol, 10: 623–643

    Article  Google Scholar 

  • Basharinov A, Shutko A. 1975. Simulation studies of the SHF radiation characteristics of soils under moist conditions. NASA Tech Transl. NASA

    Google Scholar 

  • Chen Y Y, Yang K, Tang W J, et al. 2012. Parameterizing soil organic carbon’s impacts on soil porosity and thermal parameters for Eastern Tibet grasslands. Sci China Earth Sci, 55: 1001–1011

    Article  Google Scholar 

  • Choudhury B J, Schmugge T J, Chang A, et al. 1979. Effect of surface roughness on the microwave emission from soils. J Geophys Res, 84: 5699–5706

    Article  Google Scholar 

  • De Jeu R A M, Owe M. 2003. Further validation of a new methodology for surface moisture and vegetation optical depth retrieval. Int J Remote Sens, 24: 4559–4578

    Article  Google Scholar 

  • de Rosnay P, Drusch M, Boone A, et al. 2009. AMMA land surface model intercomparison experiment coupled to the community microwave emission model: ALMIP-MEM. J Geophys Res, 114, doi: 10.1029/2008JD010724

    Google Scholar 

  • Drusch M, Holmes T, de Rosnay P, et al. 2009. Comparing ERA-40-based l-band brightness temperatures with skylab observations: A calibration/validation study using the community microwave emission model. J Hydrometeorol, 10: 213–226

    Article  Google Scholar 

  • Du J Y. 2012. A method to improve satellite soil moisture retrievals based on Fourier analysis. Geophys Res Lett, 39, doi: 10.1029/2012gl052435

  • Holmes T R H, De Jeu R A M, Owe M, et al. 2009. Land surface temperature from Ka band (37 GHz) passive microwave observations. J Geophys Res, 114, doi: 10.1029/2008JD010257

  • Jackson T J, Schmugge T J, Wang J R. 1982. Passive microwave sensing of soil moisture under vegetation canopies. Water Resour Res, 18: 1137–1142

    Article  Google Scholar 

  • Jackson T J, Schmugge T J. 1991. Vegetation effects on the microwave emission of soils. Remote Sens Environ, 36: 203–212

    Article  Google Scholar 

  • Jackson T J. 1993. III. Measuring surface soil moisture using passive microwave remote sensing. Hydrol Process, 7: 139–152

    Article  Google Scholar 

  • Jackson T J, Levine D M, Swift C T, et al. 1995. Large-area mapping of soil-moisture using the estar passive microwave radiometer in Washita92. Remote Sens Environ, 54: 27–37

    Article  Google Scholar 

  • Jackson T J, Le Vine D M, Hsu A Y, et al. 1999. Soil moisture mapping at regional scales using microwave radiometry: The southern great plains hydrology experiment. IEEE Trans Geosci Remote Sens, 37: 2136–2151

    Article  Google Scholar 

  • Jackson T J, Cosh M H, Bindlish R, et al. 2010. Validation of advanced microwave scanning radiometer soil moisture products. IEEE Trans Geosci Remote Sens, 48: 4256–4272

    Article  Google Scholar 

  • Jackson T J, Bindlish R, Cosh M H, et al. 2012. Validation of soil moisture and ocean salinity (SMOS) soil moisture over watershed networks in the U.S. IEEE Trans Geosci Remote Sens, 50: 1530–1543

    Article  Google Scholar 

  • Jin R, Li X, Che T. 2009. A decision tree algorithm for surface soil freeze/thaw classification over China using SSM/I brightness temperature. Remote Sens Environ, 113: 2651–2660

    Article  Google Scholar 

  • Kerr Y H, Njoku E G. 1990. A semiempirical model for interpreting microwave emission from semiarid land surfaces as seen from space. IEEE Trans Geosci Remote Sens, 28: 384–393

    Article  Google Scholar 

  • Kirdiashev K, Chukhlantsev A, Shutko A. 1979. Microwave radiation of the earth’s surface in the presence of vegetation cover. Radio Eng Electron Engl Transl, 24: 256–264

    Google Scholar 

  • Koike T, Njoku E, Jackson T J, et al. 2000. Soil moisture algorithm development and validation for the ADEOS-II/AMSR. IEEE 2000 International Geoscience and Remote Sensing Symposium. 1253–1255

    Google Scholar 

  • Koike T. 2004. Coordinated Enhanced Observing Period (CEOP)—An initial step for integrated global water cycle observation. World Meteorol Organ Bull, 53: 115–212

    Google Scholar 

  • Lei W, Zhen L, Xin R. 2004. The effects of vegetation in soil moisture retrieval using microwave radiometer data. IEEE 2004 International Geoscience and Remote Sensing Symposium. 2799–2802

    Google Scholar 

  • LeVine D M, Karam M A. 1996. Dependence of attenuation in a vegetation canopy on frequency and plant water content. IEEE Trans Geosci Remote Sens, 34: 1090–1096

    Article  Google Scholar 

  • Li L, Njoku E G, Im E, et al. 2004. A preliminary survey of radio-frequency interference over the US in Aqua AMSR-E data. IEEE Trans Geosci Remote Sens, 42: 380–390

    Article  Google Scholar 

  • Ma Y, Yao T, Wang J. 2006. Experimental study of energy and water cycle in Tibetan Plateau—The progress introduction on the study of GAME/Tibet and CAMP/Tibet (in Chinese). Plateau Meteor, 25: 344–351

    Google Scholar 

  • Maetzler C. 2000. Microwave emission from covered surfaces: Zero order versus multiple scattering. Radiative Transfer Models for Microwave Radiometry. European Commission

    Google Scholar 

  • McCabe M F, Gao H, Wood E F. 2005. Evaluation of AMSR-E-derived soil moisture retrievals using ground-based and PSR airborne data during SMEX02. J Hydrometeorol, 6: 864–877

    Article  Google Scholar 

  • Milly P C D, Dunne K A. 1994. Sensitivity of the global water cycle to the water-holding capacity of land. J Climate, 7: 506–526

    Article  Google Scholar 

  • Mo T, Choudhury B J, Schmugge T J, et al. 1982. A model for microwave emission from vegetation-covered fields. J Geophys Res, 87: 1229–1237

    Article  Google Scholar 

  • Mo T, Schmugge T J. 1987. A parameterization of the effect of surface roughness on microwave emission. IEEE Trans Geosci Remote Sens, 25: 481–486

    Article  Google Scholar 

  • Mo T, Wang J R, Schmugge T J. 1988. Estimation of surface-roughness parameters from dual-frequency measurements of radar backscattering coefficients. IEEE Trans Geosci Remote Sens, 26: 574–579

    Article  Google Scholar 

  • Njoku E G, Entekhabi D. 1996. Passive microwave remote sensing of soil moisture. J Hydrol, 184: 101–129

    Article  Google Scholar 

  • Njoku E G, Li L. 1999. Retrieval of land surface parameters using passive microwave measurements at 6–18 GHz. IEEE Trans Geosci Remote Sensing, 37: 79–93

    Article  Google Scholar 

  • Njoku E G, Chan S K. 2006. Vegetation and surface roughness effects on AMSR-E land observations. Remote Sens Environ, 100: 190–199

    Article  Google Scholar 

  • Owe M, de Jeu R, Walker J. 2001a. A methodology for surface soil moisture and vegetation optical depth retrieval using the microwave polarization difference index. IEEE Trans Geosci Remote Sens, 39: 1643–1654

    Article  Google Scholar 

  • Owe M, Van De Griend A A. 2001b. On the relationship between thermodynamic surface temperature and high-frequency (37 GHz) vertically polarized brightness temperature under semi-arid conditions. Int J Remote Sens, 22: 3521–3532

    Article  Google Scholar 

  • Paloscia S, Macelloni G, Santi E, et al. 2001. A multifrequency algorithm for the retrieval of soil moisture on a large scale using microwave data from SMMR and SSM/I satellites. IEEE Trans Geosci Remote Sens, 39: 1655–1661

    Article  Google Scholar 

  • Pampaloni P, Paloscia S. 1986. Microwave emission and plant water content: A comparison between field measurements and theory. IEEE Trans Geosci Remote Sens, 24: 900–905

    Article  Google Scholar 

  • Panciera R, Walker J P, Merlin O. 2009. Improved understanding of soil surface roughness parameterization for l-band passive microwave soil moisture retrieval. IEEE Geosci Remote Sens Lett, 6: 625–629

    Article  Google Scholar 

  • Comprehensive Scientific Expedition of the Chinese Academy of Sciences of Tibet Plateau. 1984. Tibet Plateau Climate (in Chinese). Beijing: Science Press

    Google Scholar 

  • Polcher J. 1995. Sensitivity of tropical convection to land-surface processes. J Atmos Sci, 52: 3143–3161

    Article  Google Scholar 

  • Schmugge T J. 1980. Effect of texture on microwave emission from soils. IEEE Trans Geosci Remote Sens, 18: 353–361

    Article  Google Scholar 

  • Schmugge T J, Kustas W P, Ritchie J C, et al. 2002. Remote sensing in hydrology. Adv Water Resour, 25: 1367–1385

    Article  Google Scholar 

  • Shi J C, Jiang L M, Zhang L X, et al. 2005. A parameterized multifrequency-polarization surface emission model. IEEE Trans Geosci Remote Sens, 43: 2831–2841

    Article  Google Scholar 

  • Shi J C, Jiang L M, Zhang L X, et al. 2006. Physically based estimation of bare-surface soil moisture with the passive radiometers. IEEE Trans Geosci Remote Sens, 44: 3145–3153

    Article  Google Scholar 

  • Sun H L, Zheng D. 1996. The Evolution of Tibet Plateau (in Chinese). Shanghai: Shanghai Scientific and Technical Publishers

    Google Scholar 

  • Tetsuo N, Chen L X. 2000. Water budget analysis over the Tibetan Plateau during the northern summer in 1994 (in Chinese). In: Tao S Y, Chen L S, eds. Progress on the Second Tibet Plateau Atmospheric Science Experiment. Beijing: China Meteorological Press. 104–107

    Google Scholar 

  • Ulaby F, Moore R, Fung A. 1986. Microwave Remote Sensing: Active and Passive, vol. III, Volume Scattering and Emission Theory, Advanced Systems and Applications. Vol. 3. Norwood, MA: Artech House, Inc

    Google Scholar 

  • Wang J R, Choudhury B J. 1981. Remote sensing of soil moisture content over bare field at 1.4 GHz frequency. J Geophys Res, 86: 5277–5282

    Article  Google Scholar 

  • Wang J R, Oneill P E, Jackson T J, et al. 1983. Multifrequency measurements of the effects of soil moisture, soil texture, and surface roughness. IEEE Trans Geosci Remote Sens, 21: 44–51

    Article  Google Scholar 

  • Wigneron J P, Laguerre L, Kerr Y H. 2001. A simple parameterization of the L-band microwave emission from rough agricultural soils. IEEE Trans Geosci Remote Sens, 39: 1697–1707

    Article  Google Scholar 

  • Yang K, Ye B S, Zhou D G, et al. 2011. Response of hydrological cycle to recent climate changes in the Tibetan Plateau. Clim Change, 109: 517–534

    Article  Google Scholar 

  • Zhang J J, Zhu B Z. 1988. The progress of the Tibet Plateau meteorology (in Chinese). In: Tibet Plateau Meteorological Experiment (1979) and Research. Beijing: Science Press. 1995–1997

    Google Scholar 

  • Zhang Y L, Li B Y, Zheng D. 2002. A discussion on the boundary and area of the Tibetan Plateau in China (in Chinese). Geogr Res, 21: 1–8

    Google Scholar 

  • Zhang Z J, Sun G Q. 2003. Model investigation of the effect of vegetation on passive microwave soil moisture retrieval. SPIE 4894, Microwave Remote Sensing of the Atmosphere and Environment III, 140 (April 30, 2003), doi: 10.1117/12.466080

    Google Scholar 

  • Zheng D, Zhang R Z. 1979. A discussion on physical geographic zone of the Tibet Plateau (in Chinese). J Geogr Sci, 34: 1–11

    Google Scholar 

  • Zheng D, Yang J Y. 1985. China’s Tibetan Plateau (in Chinese). Beijing: Science Press

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JinYang Du.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Q., Du, J., Shi, J. et al. Analysis of spatial distribution and multi-year trend of the remotely sensed soil moisture on the Tibetan Plateau. Sci. China Earth Sci. 56, 2173–2185 (2013). https://doi.org/10.1007/s11430-013-4700-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-013-4700-8

Keywords

Navigation