Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Simulation of maximum light use efficiency for some typical vegetation types in China

  • Articles
  • Published:
Chinese Science Bulletin

Abstract

Maximum light use efficiency (ε max) is a key parameter for the estimation of net primary productivity (NPP) derived from remote sensing data. There are still many divergences about its value for each vegetation type. The ε max for some typical vegetation types in China is simulated using a modified least squares function based on NOAA/AVHRR remote sensing data and field-observed NPP data. The vegetation classification accuracy is introduced to the process. The sensitivity analysis of ε max to vegetation classification accuracy is also conducted. The results show that the simulated values of ε max are greater than the value used in CASA model, and less than the values simulated with BIOME-BGC model. This is consistent with some other studies. The relative error of ε max resulting from classification accuracy is −5.5%–8.0%. This indicates that the simulated values of ε max are reliable and stable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Raymond, E., Hunt, J. R., Relationship between woody biomass and PAR conversion efficiency for estimating net primary production from NDVI, International Journal of Remote Sensing, 1994, 15: 1725–1730.

    Google Scholar 

  2. Ruimy, A., Saugier, B., Methodology for the estimation of terrestrial net primary production from remotely sensed data, Journal of Geophysical Research, 1994, 97: 18515–18521.

    Google Scholar 

  3. Goetz, S. J., Prince, S. D., Remote sensing of net primary production boreal forest stands, Agricultural and Forest Meteorology, 1996, 78: 149–179.

    Article  Google Scholar 

  4. Paruelo, J. M., Epstei, H. E., Lauenroth, W. K. et al., ANPP estimates from NDVI for the central grassland region of the United States, Ecology, 1997, 78(3): 953–958.

    Google Scholar 

  5. McCrady, R. L., Jokela, E. J., Canopy dynamics, light interception, and radiation use efficiency of selected loblolly pine families, Forest Science, 1998, 44(1): 64–72.

    Google Scholar 

  6. Peng, S. L., Guo, Z. H., Wang, B. S., Use of GIS and RS to estimate the light utilization efficiency of the vegetation in Guangdong, China, Acta Ecologica Sinica (in Chinese), 2000, 20(6): 903–909.

    Google Scholar 

  7. Potter, C. S., Randerson, J. T., Field, C. B. et al., Terrestrial ecosystem production: a process model based on global satellite and surface data, Global Biochemical Cycle, 1993, 7: 811–841.

    Google Scholar 

  8. Field, C. B., Randerson, J. T., Malmström, C. M., Global net primary production: Combining ecology and remote sensing, Remote Sensing of Environment, 1995, 51: 74–88.

    Article  Google Scholar 

  9. Field, C. B., Behrenfeld, M. J., Randerson, J. T. et al., Primary production of the biosphere: integrating terrestrialand oceanic components, Science, 1998, 281: 237–240.

    Article  Google Scholar 

  10. Piao, S. L., Fang, J. Y., Guo, Q. H., Application of CASA model to the estimation of Chinese terrestrial net primary productivity, Acta Phytoecologica Sinica (in Chinese), 2001, 25(5): 603–608.

    Google Scholar 

  11. Running, S. W., Thornton, P. E., Nemani, R. et al., Global terrestrial gross and net primary productivity from the earth observing system, in Methods in ecosystem science (eds. Sala, O., Jackson, R., Mooney, H.), New York: Springer Verlag, 2000, 44–57.

    Google Scholar 

  12. Pan, Y. Z., Gong, D. Y., Deng, L. et al., Smart distance Searching-based and DEM-informed interpolation of surface air temperature of climatology in China, Acta Geographica Sinica (in Chinese), 2004, 59(3): 366–374.

    Google Scholar 

  13. Ni, J., Zhang, X. S., Scurlock, J. M. O., NPP Multi-Biome: Chinese Forests Data, 1989–1994, Available on-line [http://www.daac.ornl.gov/] from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, U.S.A., 2001.

  14. Raich, J. W., Rastetter, E. B., Mellillo, J. M. et al., Potential net primary productivity in South America: Application of a global model, Ecological Applications, 1991, 1: 399–429.

    Google Scholar 

  15. Scurlock, J. M. O., Cramer, W., Olson, R. J. et al., Terrestrial NPP: Towards a consistent data set for global model evaluation, Ecological Applications, 1999, 9(3): 913–919.

    Google Scholar 

  16. Zhu, W. Q., Chen, Y. H., Pan, Y. Z. et al., Estimation of light utilization efficiency of vegetation in China based on GIS and RS, Geomatics and Information Science of Wuhan University (in Chinese), 2004, 29 (8): 694–698.

    Google Scholar 

  17. Hatfield, J. L., Asrar, G., Kanemasu, E. T., Intercepted photosynthetically active radiation in wheat canopies estimated by spectral reflectance, Remote Sensing of Environment, 1984, 14: 65–75.

    Article  Google Scholar 

  18. Sellers, P. J., Canopy reflectance, photosynthesis, and transpiration, International Journal of Remote Sensing, 1985, 6: 1335–1371.

    Google Scholar 

  19. Huemmrich, K. F., Goward, S. N., Spectral vegetation indices and the remote sensing of biophysical parameters, in Proceeding of International Geoscience and Remote Sensing Symposium (IGARSS), Institute of Electrical and Electronics Engineers, Houston, Texas, 1992, 1017–1019.

    Google Scholar 

  20. Los, S. O., Justice, C. O., Tucker, C. J., A global 1° by 1° NDVI dataset for climate studies derived from the GIMMS continental NDVI data, International Journal of Remote Sensing, 1994, 15: 3493–3518.

    Google Scholar 

  21. Sellers, P. J., Randall, D. A., Collatz, J. A. et al., A revised land-surface parameterization (SiB2) for GCMs, Part 1: Model Formulation, Journal of Climate, 1996, 9: 676–705.

    Google Scholar 

  22. Jin, X. H., Liu, H. G., Song, Y. C., Study on the productivity of shrubbery in Yi County, Southern Anhui Province, Acta Phytoecologica et Geobotanica Sinica (in Chinese), 1990, 14(3): 267–273.

    Google Scholar 

  23. Chen, X. L., Ma, Q. Y., Kang, F. F. et al., Studies on the biomass and productivity of typical shrubs in Taiyue Mountain, Shanxi Province, Forest Research (in Chinese), 2002, 15(3): 304–309.

    Google Scholar 

  24. Tang, J. W., Zhang J. H., Song, Q. S. et al., Biomass and net primary productivity of artificial tropical rainforest in Xishuangbanna, Chinese Journal of Applied Ecology (in Chinese), 2003, 14(1): 1–6.

    Google Scholar 

  25. Liu, J. H., Xu X. X., Yang, G. et al., Study on biomass of secondary shrubbery community in small watershed of Loess Hill and Gully Region, Acta Botanica Boreal Occident Sinica (in Chinese), 2003, 23(8): 1362–1366.

    Google Scholar 

  26. Fan, J. W., Zhong, H. P., Liang, B. et al., Carbon stock in grassland ecosystem and its affecting factors, Grassland of China (in Chinese), 2003, 25(6): 51–58.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pan Yaozhong.

About this article

Cite this article

Zhu, W., Pan, Y., He, H. et al. Simulation of maximum light use efficiency for some typical vegetation types in China. CHINESE SCI BULL 51, 457–463 (2006). https://doi.org/10.1007/s11434-006-0457-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-006-0457-1

Keywords

Navigation