Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Profile Statistical Inference for Partially Linear Additive Models with a Diverging Number of Parameters

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

This paper considers partially linear additive models with the number of parameters diverging when some linear constraints on the parametric part are available. This paper proposes a constrained profile least-squares estimation for the parametric components with the nonparametric functions being estimated by basis function approximations. The consistency and asymptotic normality of the restricted estimator are given under some certain conditions. The authors construct a profile likelihood ratio test statistic to test the validity of the linear constraints on the parametric components, and demonstrate that it follows asymptotically chi-squared distribution under the null and alternative hypotheses. The finite sample performance of the proposed method is illustrated by simulation studies and a data analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fan Y and Li Q, A kernel-based method for estimation additive partially linear models, Stat. Sinica, 2003, 13: 739–762.

    MATH  Google Scholar 

  2. Li Q, Efficient estimation of additive partially linear models, Internat. Econom. Rev., 2000, 41: 1073–1092.

    Article  MathSciNet  Google Scholar 

  3. Liang H, Thurston H, Ruppert D, et al., Additive partial linear models with measurement errors, Biometrika, 2008, 95: 667–678.

    Article  MathSciNet  Google Scholar 

  4. Liu X, Wang L, and Liang H, Estimation and variable selection for semiparametric additive partial linear models, Stat. Sinica, 2011, 21: 1225–1248.

    Article  MathSciNet  Google Scholar 

  5. Opsomer J D and Ruppert D, Fitting a bivariate additive model by local polynomial regression, Ann. Stat., 1997, 25: 186–211.

    Article  MathSciNet  Google Scholar 

  6. Opsomer J D and Ruppert D, A root-n consistent backfitting estimator for semiparametric additive modeling, J. Comput. Graph. Stat., 1999, 8: 715–732.

    Google Scholar 

  7. Stone C J, Additive regression and other nonparametric models, Ann. Statist., 1985, 13: 685–705.

    Article  MathSciNet  Google Scholar 

  8. Lam C and Fan J, Profile-Kernel likelihood inference with diverging number of parameters, Ann. Statist., 2008, 36: 2232–2260.

    Article  MathSciNet  Google Scholar 

  9. Li G, Lin L, and Zhu L, Empirical likelihood for varying coefficient partially linear model with diverging number of parameters, J. Multivariate Anal., 2012, 105: 85–111.

    Article  MathSciNet  Google Scholar 

  10. Li G, Xue L, and Lian H, Semi-varying coefficient models with a diverging number of components, J. Multivariate Anal., 2011, 102: 1166–1174.

    Article  MathSciNet  Google Scholar 

  11. Du P, Cheng G, and Liang H, Semiparametric regression models with additive nonparametric components and high dimensional parametric components, Comput. Stat. Data An., 2012, 56: 2006–2017.

    Article  MathSciNet  Google Scholar 

  12. Fang J, Liu W, and Lu X, Penalized empirical likelihood for semiparametric models with a diverging number of parameters, J. Stat. Plan. Infer., 2017, 186: 42–57.

    Article  MathSciNet  Google Scholar 

  13. Guo J, Tang M, Tian M, et al., Variable selection in high-dimensional partially linear additive models for composite quantile regression, Comput. Stat. Data An., 2013, 65: 56–67.

    Article  MathSciNet  Google Scholar 

  14. Li X, Wang L, and Nettleton D, Additive partially linear models for ultra-high-dimensional regression, Stat, 2019, 8(1): e223–287.

    Article  MathSciNet  Google Scholar 

  15. Lian H, Variable selection in high-dimensional partly linear additive models, J. Nonparametr. Stat., 2012, 24: 825–839.

    Article  MathSciNet  Google Scholar 

  16. Lian H, Liang H, and Ruppert D, Separation of covariates into nonparametric and parametric parts in high-dimensional partially linear additive models, Stat. Sinica, 2015, 25: 591–607.

    MathSciNet  MATH  Google Scholar 

  17. Sherwood B and Wang L, Partially linear additive quantile regression in ultra-high dimension, Ann. Stat., 2016, 44: 288–317.

    Article  MathSciNet  Google Scholar 

  18. Wang M, Nonconvex penalized ridge estimations for partially linear additive models in ultrahigh dimension, Stat. Methodol., 2015, 26: 1–15.

    Article  MathSciNet  Google Scholar 

  19. Xie H and Huang J, Scad-penalized regression in high-dimensional partially linear models, Ann. Statist., 2009, 37: 673–696.

    Article  MathSciNet  Google Scholar 

  20. Rao C R and Toutenburg H, Linear Models: Least Squares and Alternatives (2nd ed.), Springer, Berlin, 1999.

    MATH  Google Scholar 

  21. Przystalski M and Krajewski P, Constrained estimators of treatment parameters in semiparametric models, Stat. Probabil. Lett., 2007, 77: 914–919.

    Article  MathSciNet  Google Scholar 

  22. Wei C and Liu C, Statistical inference on semi-parametric partial linear additive models, J. Non-parametr. Stat., 2012, 24: 809–823.

    Article  MathSciNet  Google Scholar 

  23. Wei C and Wang Q, Statistical inference on restricted partially linear additive errors-in-variables models, Test, 2012, 21: 757–774.

    Article  MathSciNet  Google Scholar 

  24. Fan J and Huang T, Profile likelihood inferences on semiparametric varying coefficient partially linear models, Bernoulli, 2005, 11: 1031–1057.

    Article  MathSciNet  Google Scholar 

  25. Zhang R and Huang Z, Statistical inference on parametric part for partially linear single-index model, Sci. China Ser. A, 2009, 52: 2227–2242.

    Article  MathSciNet  Google Scholar 

  26. Schumaker L, Spline Functions: Basic Theory, Wiley, New York, 1981.

    MATH  Google Scholar 

  27. Fan J and Jiang J, Nonparametric inference with generalized likelihood ratio test, Test, 2007, 16: 409–478.

    Article  MathSciNet  Google Scholar 

  28. Fan J, Zhang C, and Zhang J, Generalized likelihood ratio statistics and wilks phenomenon, Ann. Stat., 2001, 29: 153–193.

    Article  MathSciNet  Google Scholar 

  29. Huang J, Horowitz J L, and Wei F, Variable selection in nonparametric additive models, Ann. Statist., 2010, 38: 2282–2313.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingqiu Wang.

Additional information

This research was supported by the National Natural Science Foundation of China under Grant No. 11771250, the Natural Science Foundation of Shandong Province under Grant No. ZR2019MA002, and the Program for Scientific Research Innovation of Graduate Dissertation under Grant No. LWCXB201803.

This paper was recommended for publication by Editor ZHU Lixing.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Zhao, S. & Wang, M. Profile Statistical Inference for Partially Linear Additive Models with a Diverging Number of Parameters. J Syst Sci Complex 32, 1747–1766 (2019). https://doi.org/10.1007/s11424-019-7145-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-019-7145-0

Keywords

Navigation