Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Finite element approximation for a class of parameter estimation problems

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

This paper investigates the finite element approximation of a class of parameter estimation problems which is the form of performance as the optimal control problems governed by bilinear parabolic equations, where the state and co-state are discretized by piecewise linear functions and control is approximated by piecewise constant functions. The authors derive some a priori error estimates for both the control and state approximations. Finally, the numerical experiments verify the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen Y P and Tang Y L, Variational discretization for parabolic optimal control problems with control constraints, Journal of Systems Science and Complexity, 2012, 25(5): 880–895.

    Article  MathSciNet  MATH  Google Scholar 

  2. Chen Y P, Huang Y Q, and Yi N Y, A posteriori error estimates of spectral method for optimal control problems governed by parabolic equations, Science in China Series A: Math., 2008, 1(8): 1376–1390.

    Article  MathSciNet  Google Scholar 

  3. Chen Y P, Huang Y Q, Liu W B, and Yan N N, Error estimates and superconvergence of mixed finite element methods for convex optimal control problems, J. Sci. Comput., 2010, 42(3): 382–403.

    Article  MathSciNet  MATH  Google Scholar 

  4. Falk F S, Approximation of a class of optimal control problems with order of convergence estimates, J. Math. Anal. Appl., 1973, 4: 28–47.

    Article  MathSciNet  Google Scholar 

  5. Geveci T, On the approximation of the solution of an optimal control problem governed by an elliptic equation, RAIRO Anal. Numer., 1979, 13: 313–328.

    MathSciNet  MATH  Google Scholar 

  6. Li R, Liu W B, Ma H P, and Tang T, Adaptive finite element approximation of elliptic optimal control, SIAM J. Control Optim., 2002, 41: 1321–1349.

    Article  MathSciNet  MATH  Google Scholar 

  7. Liu W B and Tiba D, Error estimates for the finite element approximation of nonlinear optimal control problems, J. Numer. Func. Optim., 2001, 22: 953–972.

    Article  MathSciNet  MATH  Google Scholar 

  8. Liu W B and Yan N N, A posteriori error estimates for control problems governed by Stokes equations, SIAM J. Numer. Anal., 2002, 40: 1850–1869.

    Article  MathSciNet  MATH  Google Scholar 

  9. Liu W B and Yan N N, A posteriori error estimates for optimal control problems governed by parabolic equations, Numer. Math., 2003, 93: 497–521.

    Article  MathSciNet  MATH  Google Scholar 

  10. Neittaanmaki P and Tiba D, Optimal Control of Nonlinear Parabolic Systems Theory, Algorithms and Applications, New York, 1994.

    Google Scholar 

  11. Xing X X and Chen Y P, Error estimates of mixed methods for optimal control problems governed by parabolic equations, Inter. J. for Numer. Meth. Eng., 2008, 75(6): 735–754.

    Article  MathSciNet  MATH  Google Scholar 

  12. Fu H F and Rui H X, Finite element approximation of semilinear parabolic optimal control problems, Numer. Math.: Theory, Method, and Appl., 2011, 4(4): 489–504.

    MathSciNet  MATH  Google Scholar 

  13. Ciarlet P G, The Finite Element Method for Elliptic Problems, Society for Industrial and Applied Mathematics, Philadelphia, 2002.

    Book  Google Scholar 

  14. Lions J L, Optimal Control of Systems Governed by Partial Differential Equations, Springer-Verlag, Berlin, 1971.

    Book  MATH  Google Scholar 

  15. Tiba D, Lectures on the Optimal Control of Elliptic Equations, University of Jyvaskyla Press, Finland, 1995.

    Google Scholar 

  16. Becker R and Vexler B, A posteriori error estimation for finite element discretization of parameter identification problems, Numer. Math., 2004, 96: 435–459.

    Article  MathSciNet  MATH  Google Scholar 

  17. Feng T, Yan N N, and Liu W B, Adaptive finite element methods for the identification of distributed parameters in elliptic equation, Adv. Comput. Math., 2008, 29: 27–53.

    Article  MathSciNet  MATH  Google Scholar 

  18. Kunisch K, Liu W B, Chang Y Z, Yan N N, and Li R, Adaptive finite element approximation for a class of parameter estimation problems, J. Comp. Math., 2010, 28: 645–675.

    MathSciNet  MATH  Google Scholar 

  19. Yang D P, Chang Y Z, and Liu W B, A priori error estimate and superconvergence analysis for an optimal control problem of bilinear type, J. Comp. Math., 2008, 26: 471–487.

    MathSciNet  MATH  Google Scholar 

  20. Thomée V, Galerkin Finite Element Methods for Parabolic Problems, Springer Series in Computational Mathematics, Springer-Verlag, Berlin, 1997.

    Book  MATH  Google Scholar 

  21. Wheeler M F, A priori L2 error estimates for Galerkin approximations to parabolic partial differential equations, SIAM J. Numer. Anal., 1973, 10: 723–759.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanzhen Chang.

Additional information

This research was supported by the National Natural Science Foundation of China under Grant Nos. 11101025, 11071080, 11171113, the Fundamental Research Funds for the Central Universities and the Youth Foundation of Tianyuan Mathematics, the National Natural Science Foundation of China under Grant No. 11126279.

This paper was recommended for publication by Editor HONG Yiguang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, Y., Yang, D. Finite element approximation for a class of parameter estimation problems. J Syst Sci Complex 27, 866–882 (2014). https://doi.org/10.1007/s11424-014-1218-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-014-1218-x

Keywords

Navigation