Abstract
The study of the control and stabilization of the KdV equation began with the work of Russell and Zhang in late 1980s. Both exact control and stabilization problems have been intensively studied since then and significant progresses have been made due to many people's hard work and contributions. In this article, the authors intend to give an overall review of the results obtained so far in the study but with an emphasis on its recent progresses. A list of open problems is also provided for further investigation.
Similar content being viewed by others
References
J. Boussinesq, Théorie de l'intumescence liquide appelée onde solitaire ou de translation, se propageant dans un canal rectangulaire, C. R. Acad. Sci. Paris, 1871, 72: 755–759.
J. Boussinesq, Théorie générale des mouvements, qui sont propagés dans un canal rectangulaire horizontal, C. R. Acad. Sci. Paris, 1871, 73: 256–260.
J. Boussinesq, Théorie des ondes et des remous qui se propagent le long dun canal rectangulaire horizontal, en communiquant au liquide continu dans ce canal des vitesses sensiblement pareilles de la surface au fond, J. Math. Pures Appl., 1872, 17: 55–108.
J. Boussinesq, Essai Sur La ThÉorie Des Eaux Courantes, Mémoires présentés par divers savants à l'Acad. des Sci. Inst. Nat. France, 1877, 23: 1–680.
J. W. Strutt, Rayleigh, On Waves, Phil. Mag., 1876, 1, 257C271.
G. de Vries, Bijdrage tot de Kennis der Lange Golven, Acad. Proefschrift, Universiteit van Amsterdam, 1894.
D. J. Korteweg and G. de Vries, On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, Philos. Mag., 1895, 39: 422–443.
E. M. de Jager, On the origin of the Korteweg-de Vries equation, ArXiv: math.HO/0602661.
N. J. Zabusky and M. D. Kruskal, Interaction of Solitons in a Collisionless Plasma and the Recurrence of Initial States, Phys. Rev. Let., 1965, 15: 240–243.
C. S. Gardner, J. M. Greene, M. D. Kruskal, and R. M. Miura, Method for solving the Korteweg-de Vries equation, Phys. Rev. Lett., 1967, 19: 1095–1097.
P. Constantin and J. C. Saut, Local smoothing properties of dispersive equations, J. Amer. Math. Soc., 1988, 1: 413–446.
D. L. Russell, Computational study of the Korteweg-de Vries equation with localized control action, Distributed Parameter Control Systems: New Trends and Applications (ed. by G. Chen, E. B. Lee, W. Littman, and L. Markus), Lecture Notes in Pure and Appl. Math., Marcel Dekker, New York, 1991, 128: 195–203.
B. Y. Zhang, Some results of nonlinear dispersive wave equations with applications to control, Ph. D. thesis, University of Wisconsin-Madison, 1990.
R. M. Miura, The Korteweg-de Vries equation: A survey of results, SIAM Rev., 1976, 18: 412–459.
J. C. Saut and R. Temam, Remarks on the Korteweg-de Vries equation, Israel J. Math., 1976, 24: 78–87.
T. Kato, On the Cauchy problem for the (generalized) Korteweg-de Vries equations, in Advances in Mathematics Supplementary Studies, Stud. Appl. Math., Academic Press, New York, 1983, 8: 93–128.
J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to non-linear evolution equations, part II: the KdV equation, Geom. & Funct. Anal., 1993, 3: 209–262.
C. E. Kenig, G. Ponce, and L. Vega, A bilinear estimate with applications to the KDV equation, J. Amer. Math. Soc., 1996, 9: 573–603.
T. Kappeler and P. Topalov, Well-posedness of KDV on H 1(\({\mathbb T}\)), Duke Math. J., 2006, 135: 327–360.
V. Komornik, D. L. Russell, and B. Y. Zhang, Stabilization de l'équation de Korteweg-de Vries, ZC. R. Acad. Sci. Paris, Séries I Math., 1991, 312: 841–843.
D. L. Russell and B. Y. Zhang, Controllability and stabilizability of the third order linear dispersion equation on a periodic domain, SIAM J. Cont. Optim., 1993, 31: 659–676.
D. L. Russell and B. Y. Zhang, Exact controllability and stabilizability of the Korteweg-de Vries equation, Trans. Amer. Math. Soc., 1996, 348: 3643–3672.
M. Slemrod, A note on complete controllability and stabilizability for linear control systems in Hilbert space, SIAM Control, 1974, 12, 500–508.
C. Laurent, L. Rosier, and B. Y. Zhang, Control and Stabilization of the Korteweg-de Vries Equation on a Periodic Domain, submitted.
J. M. Coron and L. Rosier, A Relation Between Continuous Time-Varying and Discontinuous Feedback Stabilization, Journal of Mathematical Systems, Estimation, and Control, 1994, 4: 67–84.
C. Laurent, Global controllability and stabilization for the nonlinear Schrödinger equation on an interval, to appear in ESAIM-COCV.
L. Rosier, Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain, ESAIM Control Optim. Calc. Var., 1997, 2: 33–55.
J. M. Coron and E. Crépeau, Exact boundary controllability of a nonlinear KdV equation with a critical length, J. Eur. Math. Soc., 2004, 6: 367–398.
E. Cerpa, Exact controllability of a nonlinear Korteweg-de Vries equation on a critical spatial domain, SIAM J. Control Optim., 2007, 46: 877–899.
E. Cerpa and E. Cré, Boundary controllability for the nonlinear Korteweg-de Vries equation on any critical domain, Ann. I.H. Poincaré - AN, 2009, 26: 457–475.
B. Y. Zhang, Exact boundary controllability of the Korteweg-de Vries equation, SIAM J. Cont. Optim., 1999, 37: 543–565.
L. Rosier and B. Y. Zhang, Exact boundary controllability of the nonlinear Schrödinger equation, J. Differential Equations, 2009, 246: 4129–4153.
L. Rosier, Control of the surface of a fluid by a wavemaker, ESAIM Control Optim. Calc. Var., 2004, 10: 346–380.
O. Glass and S. Guerrero, Some exact controllability results for the linear KDV equation and uniform controllability in the zero-dispersion limit, Asymptot. Anal., 2008, 60 (1/2): 61–100.
O. Glass and S. Guerrero, Controllability of the Korteweg-de Vries equation from the right Dirichlet boundary condition, preprint.
O. Glass and B. Y. Zhang, Interior regularity of solution of the KDV equation on a finite domain, in preparation.
G. Perla-Menzala, C. F. Vasconcellos, and E. Zuazua, Stabilization of the Korteweg-de Vries equation with localized damping, Quart. Appl. Math., 2002, 60: 111–129.
A. F. Pazoto, Unique continuation and decay for the Korteweg-de Vries equation with localized damping, ESAIM Control Optim. Calc. Var., 2005, 11: 473–486.
L. Rosier and B. Y. Zhang, Global stabilization of the generalized Korteweg-de Vries equation, SIAM J. Control Optim., 2006, 45: 927–956.
F. Linares and A. F. Pazoto, On the exponential decay of the critical generalized Korteweg-de Vries equation with localized damping, Proc. Amer. Math. Soc., 2007, 135(5): 1515–1522.
J. C. Saut and B. Scheurer, Unique continuation for some evolution equations, J. Differential Equations, 1987, 66: 118–139.
B. Y. Zhang, Unique continuation for the Korteweg-De Vries equation, SIAM J. Math. Anal., 1992, 23: 55–71.
B. Y. Zhang, On propagation speed of the evolution equations, J. Diff. Eqns., 1994, 107: 290–309.
J. L. Bona, S. M. Sun, and B. Y. Zhang, A nonhomogeneous boundary value problem for the Korteweg-de Vries equation in a quarter plane, Trans. American Math. Soc., 2001, 354: 427–490.
J. L. Bona, S. M. Sun, and B. Y. Zhang, Forced oscillations of a damped KdV equation in a quarter plane, Commun. Contemp. Math., 2003, 5: 369–400.
J. L. Bona, S. M. Sun, and B. Y. Zhang, Boundary smoothing properties of the Korteweg-de Vries equation in a quarter plane and applications, Dynamics Partial Differential Eq., 2006, 3: 1–70.
J. L. Bona, S. M. Sun, and B. Y. Zhang, Nonhomogeneous problems for the Korteweg-de Vries and the Korteweg-de Vries-Burgers equations in a quarter plane, Ann. Inst. H. Poincaré Anal. Non Linéaire, 2008, 25: 1145–1185.
J. L. Bona, S. M. Sun, and B. Y. Zhang, Conditional and unconditional well-posedness of nonlinear evolution equations, Adv. Differential Eq., 2004, 9: 241–265.
L. Rosier, Exact boundary controllability for the linear Korteweg-de Vries equation on the half-line, SIAM J. Control Optim., 2000, 39: 331–351.
L. Rosier, A fundamental solution supported in a strip for a dispersive equation, Computational and Applied Mathematics, 2002, 21: 355–367.
N. Hyayashi, E. Kaikina, and J. Guardato Zavala, On the boundary-value problem for the Korteweg-de Vries equation, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 2003, 459(2039): 2861–2884.
F. Linares and A. F. Pazoto, Asymptotic behavior of the Korteweg-de Vries equation posed in a quarter plane, J. Diff. Equations, 2009, 246: 1342–1353.
A. F. Pazoto and L. Rosier, Uniform stabilization in weighted Sobolev spaces for the KDV equation posed on the half-line, in preparation.
K. Beauchard and J. M. Coron, Controllability of a quantum particle in a moving potential well, J. Functional Analysis, 2006, 232: 328–389.
J. M. Coron, On the small time local controllability of a quantum particle in a moving one-dimensional infinite square potential well, C. R. Acad. Sci. Paris, 2006, 342: 103–108.
J. M. Coron, Control and Nonlinearity, Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2007, 136.
M. Chapouly, Global controllability of a nonlinear Korteweg-de Vries equation, preprint.
J. L. Bona, S. M. Sun, and B. Y. Zhang, Nonhomogeneous problem for the Korteweg-de Vries equation in a bounded domain II, J. Diff. Eqns, to appear.
B. Y. Zhang, Forced oscillations of a regularized long-wave equation and their global stability, Differential Equations and Computational Simulations (Chengdu; 1999), World Scientific Publishing, River Edge, NJ, 2000, 456{463.
B. Y. Zhang, Forced oscillation of the Korteweg-de Vries-Burgers equation and its stability, Control of Nonlinear Distributed Parameter Systems, College Station, TX, 1999, Lecture Notes in Pure and Appl. Math., 218, Dekker, New York, 2001, 337–357.
Y. M. Yang and B. Y. Zhang, Forced oscillations of a damped Benjamin-Bona-Mahony equation in a quarter plane, Control theory of partial differential equations, Lect. Notes Pure Appl. Math., Chapman & Hall/CRC, Boca Raton, FL, 2005, 242: 375–386.
M. Usman and B. Y. Zhang, Forced oscillations of a class of nonlinear dispersive wave equations and their stability, J. Syst. Sci. & Complexity, 2007, 20: 284–292.
J. L. Bona and R. Smith, The initial value problem for the Korteweg-de Vries equation, Philos. Trans. Roy. Soc. London Ser. A, 1975, 278: 555–601.
J. L. Bona, S. M. Sun, and B. Y. Zhang, A nonhomogeneous boundary value problem for the Korteweg-de Vries equation in a bounded domain, Commun. Partial Differential Eq., 2003, 28: 1391–1436.
E. Cerpa and E. Crépeau, Rapid exponential stabilization for a linear Korteweg-de Vries equation, Discrete Contin. Dyn. Syst. Ser. B, 2009, 11(3): 655–668.
B. Dehman, P. Gérard, and G. Lebeau, Stabilization and control for the nonlinear Schrödinger equation on a compact surface, Math. Z, 2006, 254: 729–749.
C. E. Kenig, G. Ponce, and L. Vega, Well-posedness of the initial value problem for the KDV equation, J. Amer. Math. Soc., 1991, 4: 323–347.
C. Laurent, Global controllability and stabilization for the nonlinear Schrödinger equation on some compact manifolds of dimension 3, submitted.
S. Micu, J. Ortega, L. Rosier, and B. Y. Zhang, Control and stabilization of a family of Boussinesq systems, Discrete and Continuous Dynamical Systems, 2009, 24: 273–313.
A. F. Pazoto and L. Rosier, Stabilization of a Boussinesq system of KDV-KDV type, Systems & Control Letters, 2008, 57: 595–601.
L. Rosier, Exact boundary controllability for the linear Korteweg-de Vries equation–a numerical study, in Control and Partial Differential Equations (Marseille-Luminy, 1997), ESAIM Proc., 1998, 4, Soc. Math. Appl. Indust., Paris, 255–267.
L. Rosier and B. Y. Zhang, Exact controllability and stabilization of the nonlinear Schrödinger equation on a bounded interval, SIAM J. Control Optim., 2009, 48: 972–992.
L. Rosier and B. Y. Zhang, Control and stabilization of the nonlinear Schrödinger equation on rectangles, submitted.
D. L. Russell, Controllability and stabilizability theory for linear partial differential equations: Recent progress and open questions, SIAM Rev., 1978, 20: 639–739.
D. L. Russell and B. Y. Zhang, Smoothing and decay properties of solutions of the Korteweg-de Vries equation on a periodic domain with point dissipation, J. Math. Anal. Appl., 1995, 190: 449–488.
T. Tao, Nonlinear dispersive equations, local and global analysis, CBMS Regional Conference Series in Mathematics, 106. AMS, Providence, RI, 2006.
R. Temam, Sur un problµeme non linéaire, J. Math. Pures Appl., 1969, 48: 159–172.
B. Y. Zhang, Boundary stabilization of the Korteweg-de Vries equation, Proc. of International Conference on Control and Estimation of Distributed Parameter Systems: Nonlinear Phenomena, Vorau (Styria, Austria), July 18–24, 1993, International Series of Numerical Mathematics, Vol. 118, Birkhauser: Basel, 1994, 371–389.
B. Y. Zhang, Taylor series expansion for solutions of the Korteweg-de Vries equation with respect to their initial values, J. Funct. Anal., 1995, 129: 293–324.
B. Y. Zhang, Analyticity of solutions for the generalized Korteweg-de Vries equation with respect to their initial datum, SIAM J. Math. Anal., 1995, 26: 1488–1513.
B. Y. Zhang, Exact controllability of the generalized Boussinesq equation, Control and estimation of distributed parameter systems (Vorau, 1996), 297–310, Internat. Ser. Numer. Math., 126, Birkhauser, Basel, 1998.
Author information
Authors and Affiliations
Corresponding author
Additional information
The paper is dedicated to the Institute of System Science, Academy of Mathematics and Systems Science, Chinese Academy of Sciences for its 30th anniversary.
Report of the 14th meeting of the British Association for the Advancement of Science, York, September 1844 (London 1845), pp 311{390, Plates XLVII-LVII
Rights and permissions
About this article
Cite this article
Rosier, L., Zhang, BY. Control and stabilization of the Korteweg-de Vries equation: recent progresses. J Syst Sci Complex 22, 647–682 (2009). https://doi.org/10.1007/s11424-009-9194-2
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11424-009-9194-2