Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Control and stabilization of the Korteweg-de Vries equation: recent progresses

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

The study of the control and stabilization of the KdV equation began with the work of Russell and Zhang in late 1980s. Both exact control and stabilization problems have been intensively studied since then and significant progresses have been made due to many people's hard work and contributions. In this article, the authors intend to give an overall review of the results obtained so far in the study but with an emphasis on its recent progresses. A list of open problems is also provided for further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Boussinesq, Théorie de l'intumescence liquide appelée onde solitaire ou de translation, se propageant dans un canal rectangulaire, C. R. Acad. Sci. Paris, 1871, 72: 755–759.

    Google Scholar 

  2. J. Boussinesq, Théorie générale des mouvements, qui sont propagés dans un canal rectangulaire horizontal, C. R. Acad. Sci. Paris, 1871, 73: 256–260.

    Google Scholar 

  3. J. Boussinesq, Théorie des ondes et des remous qui se propagent le long dun canal rectangulaire horizontal, en communiquant au liquide continu dans ce canal des vitesses sensiblement pareilles de la surface au fond, J. Math. Pures Appl., 1872, 17: 55–108.

    Google Scholar 

  4. J. Boussinesq, Essai Sur La ThÉorie Des Eaux Courantes, Mémoires présentés par divers savants à l'Acad. des Sci. Inst. Nat. France, 1877, 23: 1–680.

    Google Scholar 

  5. J. W. Strutt, Rayleigh, On Waves, Phil. Mag., 1876, 1, 257C271.

    Google Scholar 

  6. G. de Vries, Bijdrage tot de Kennis der Lange Golven, Acad. Proefschrift, Universiteit van Amsterdam, 1894.

  7. D. J. Korteweg and G. de Vries, On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, Philos. Mag., 1895, 39: 422–443.

    Google Scholar 

  8. E. M. de Jager, On the origin of the Korteweg-de Vries equation, ArXiv: math.HO/0602661.

  9. N. J. Zabusky and M. D. Kruskal, Interaction of Solitons in a Collisionless Plasma and the Recurrence of Initial States, Phys. Rev. Let., 1965, 15: 240–243.

    Article  Google Scholar 

  10. C. S. Gardner, J. M. Greene, M. D. Kruskal, and R. M. Miura, Method for solving the Korteweg-de Vries equation, Phys. Rev. Lett., 1967, 19: 1095–1097.

    Article  MATH  Google Scholar 

  11. P. Constantin and J. C. Saut, Local smoothing properties of dispersive equations, J. Amer. Math. Soc., 1988, 1: 413–446.

    Article  MATH  MathSciNet  Google Scholar 

  12. D. L. Russell, Computational study of the Korteweg-de Vries equation with localized control action, Distributed Parameter Control Systems: New Trends and Applications (ed. by G. Chen, E. B. Lee, W. Littman, and L. Markus), Lecture Notes in Pure and Appl. Math., Marcel Dekker, New York, 1991, 128: 195–203.

    Google Scholar 

  13. B. Y. Zhang, Some results of nonlinear dispersive wave equations with applications to control, Ph. D. thesis, University of Wisconsin-Madison, 1990.

  14. R. M. Miura, The Korteweg-de Vries equation: A survey of results, SIAM Rev., 1976, 18: 412–459.

    Article  MATH  MathSciNet  Google Scholar 

  15. J. C. Saut and R. Temam, Remarks on the Korteweg-de Vries equation, Israel J. Math., 1976, 24: 78–87.

    Article  MATH  MathSciNet  Google Scholar 

  16. T. Kato, On the Cauchy problem for the (generalized) Korteweg-de Vries equations, in Advances in Mathematics Supplementary Studies, Stud. Appl. Math., Academic Press, New York, 1983, 8: 93–128.

  17. J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to non-linear evolution equations, part II: the KdV equation, Geom. & Funct. Anal., 1993, 3: 209–262.

    Article  MATH  MathSciNet  Google Scholar 

  18. C. E. Kenig, G. Ponce, and L. Vega, A bilinear estimate with applications to the KDV equation, J. Amer. Math. Soc., 1996, 9: 573–603.

    Article  MATH  MathSciNet  Google Scholar 

  19. T. Kappeler and P. Topalov, Well-posedness of KDV on H 1(\({\mathbb T}\)), Duke Math. J., 2006, 135: 327–360.

    MATH  MathSciNet  Google Scholar 

  20. V. Komornik, D. L. Russell, and B. Y. Zhang, Stabilization de l'équation de Korteweg-de Vries, ZC. R. Acad. Sci. Paris, Séries I Math., 1991, 312: 841–843.

    MATH  MathSciNet  Google Scholar 

  21. D. L. Russell and B. Y. Zhang, Controllability and stabilizability of the third order linear dispersion equation on a periodic domain, SIAM J. Cont. Optim., 1993, 31: 659–676.

    Article  MATH  MathSciNet  Google Scholar 

  22. D. L. Russell and B. Y. Zhang, Exact controllability and stabilizability of the Korteweg-de Vries equation, Trans. Amer. Math. Soc., 1996, 348: 3643–3672.

    Article  MATH  MathSciNet  Google Scholar 

  23. M. Slemrod, A note on complete controllability and stabilizability for linear control systems in Hilbert space, SIAM Control, 1974, 12, 500–508.

    Article  MathSciNet  Google Scholar 

  24. C. Laurent, L. Rosier, and B. Y. Zhang, Control and Stabilization of the Korteweg-de Vries Equation on a Periodic Domain, submitted.

  25. J. M. Coron and L. Rosier, A Relation Between Continuous Time-Varying and Discontinuous Feedback Stabilization, Journal of Mathematical Systems, Estimation, and Control, 1994, 4: 67–84.

    MATH  MathSciNet  Google Scholar 

  26. C. Laurent, Global controllability and stabilization for the nonlinear Schrödinger equation on an interval, to appear in ESAIM-COCV.

  27. L. Rosier, Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain, ESAIM Control Optim. Calc. Var., 1997, 2: 33–55.

    Article  MATH  MathSciNet  Google Scholar 

  28. J. M. Coron and E. Crépeau, Exact boundary controllability of a nonlinear KdV equation with a critical length, J. Eur. Math. Soc., 2004, 6: 367–398.

    Article  MATH  Google Scholar 

  29. E. Cerpa, Exact controllability of a nonlinear Korteweg-de Vries equation on a critical spatial domain, SIAM J. Control Optim., 2007, 46: 877–899.

    Article  MATH  MathSciNet  Google Scholar 

  30. E. Cerpa and E. Cré, Boundary controllability for the nonlinear Korteweg-de Vries equation on any critical domain, Ann. I.H. Poincaré - AN, 2009, 26: 457–475.

    Article  MATH  Google Scholar 

  31. B. Y. Zhang, Exact boundary controllability of the Korteweg-de Vries equation, SIAM J. Cont. Optim., 1999, 37: 543–565.

    Article  MATH  Google Scholar 

  32. L. Rosier and B. Y. Zhang, Exact boundary controllability of the nonlinear Schrödinger equation, J. Differential Equations, 2009, 246: 4129–4153.

    Article  MATH  MathSciNet  Google Scholar 

  33. L. Rosier, Control of the surface of a fluid by a wavemaker, ESAIM Control Optim. Calc. Var., 2004, 10: 346–380.

    Article  MATH  MathSciNet  Google Scholar 

  34. O. Glass and S. Guerrero, Some exact controllability results for the linear KDV equation and uniform controllability in the zero-dispersion limit, Asymptot. Anal., 2008, 60 (1/2): 61–100.

    MATH  MathSciNet  Google Scholar 

  35. O. Glass and S. Guerrero, Controllability of the Korteweg-de Vries equation from the right Dirichlet boundary condition, preprint.

  36. O. Glass and B. Y. Zhang, Interior regularity of solution of the KDV equation on a finite domain, in preparation.

  37. G. Perla-Menzala, C. F. Vasconcellos, and E. Zuazua, Stabilization of the Korteweg-de Vries equation with localized damping, Quart. Appl. Math., 2002, 60: 111–129.

    MATH  MathSciNet  Google Scholar 

  38. A. F. Pazoto, Unique continuation and decay for the Korteweg-de Vries equation with localized damping, ESAIM Control Optim. Calc. Var., 2005, 11: 473–486.

    Article  MATH  MathSciNet  Google Scholar 

  39. L. Rosier and B. Y. Zhang, Global stabilization of the generalized Korteweg-de Vries equation, SIAM J. Control Optim., 2006, 45: 927–956.

    Article  MATH  MathSciNet  Google Scholar 

  40. F. Linares and A. F. Pazoto, On the exponential decay of the critical generalized Korteweg-de Vries equation with localized damping, Proc. Amer. Math. Soc., 2007, 135(5): 1515–1522.

    Article  MATH  MathSciNet  Google Scholar 

  41. J. C. Saut and B. Scheurer, Unique continuation for some evolution equations, J. Differential Equations, 1987, 66: 118–139.

    Article  MATH  MathSciNet  Google Scholar 

  42. B. Y. Zhang, Unique continuation for the Korteweg-De Vries equation, SIAM J. Math. Anal., 1992, 23: 55–71.

    Article  MATH  MathSciNet  Google Scholar 

  43. B. Y. Zhang, On propagation speed of the evolution equations, J. Diff. Eqns., 1994, 107: 290–309.

    Article  MATH  Google Scholar 

  44. J. L. Bona, S. M. Sun, and B. Y. Zhang, A nonhomogeneous boundary value problem for the Korteweg-de Vries equation in a quarter plane, Trans. American Math. Soc., 2001, 354: 427–490.

    Article  MathSciNet  Google Scholar 

  45. J. L. Bona, S. M. Sun, and B. Y. Zhang, Forced oscillations of a damped KdV equation in a quarter plane, Commun. Contemp. Math., 2003, 5: 369–400.

    Article  MATH  MathSciNet  Google Scholar 

  46. J. L. Bona, S. M. Sun, and B. Y. Zhang, Boundary smoothing properties of the Korteweg-de Vries equation in a quarter plane and applications, Dynamics Partial Differential Eq., 2006, 3: 1–70.

    MATH  MathSciNet  Google Scholar 

  47. J. L. Bona, S. M. Sun, and B. Y. Zhang, Nonhomogeneous problems for the Korteweg-de Vries and the Korteweg-de Vries-Burgers equations in a quarter plane, Ann. Inst. H. Poincaré Anal. Non Linéaire, 2008, 25: 1145–1185.

    Article  MATH  MathSciNet  Google Scholar 

  48. J. L. Bona, S. M. Sun, and B. Y. Zhang, Conditional and unconditional well-posedness of nonlinear evolution equations, Adv. Differential Eq., 2004, 9: 241–265.

    MATH  MathSciNet  Google Scholar 

  49. L. Rosier, Exact boundary controllability for the linear Korteweg-de Vries equation on the half-line, SIAM J. Control Optim., 2000, 39: 331–351.

    Article  MATH  MathSciNet  Google Scholar 

  50. L. Rosier, A fundamental solution supported in a strip for a dispersive equation, Computational and Applied Mathematics, 2002, 21: 355–367.

    MATH  MathSciNet  Google Scholar 

  51. N. Hyayashi, E. Kaikina, and J. Guardato Zavala, On the boundary-value problem for the Korteweg-de Vries equation, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 2003, 459(2039): 2861–2884.

    Article  MathSciNet  Google Scholar 

  52. F. Linares and A. F. Pazoto, Asymptotic behavior of the Korteweg-de Vries equation posed in a quarter plane, J. Diff. Equations, 2009, 246: 1342–1353.

    Article  MATH  MathSciNet  Google Scholar 

  53. A. F. Pazoto and L. Rosier, Uniform stabilization in weighted Sobolev spaces for the KDV equation posed on the half-line, in preparation.

  54. K. Beauchard and J. M. Coron, Controllability of a quantum particle in a moving potential well, J. Functional Analysis, 2006, 232: 328–389.

    Article  MATH  MathSciNet  Google Scholar 

  55. J. M. Coron, On the small time local controllability of a quantum particle in a moving one-dimensional infinite square potential well, C. R. Acad. Sci. Paris, 2006, 342: 103–108.

    MATH  MathSciNet  Google Scholar 

  56. J. M. Coron, Control and Nonlinearity, Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2007, 136.

  57. M. Chapouly, Global controllability of a nonlinear Korteweg-de Vries equation, preprint.

  58. J. L. Bona, S. M. Sun, and B. Y. Zhang, Nonhomogeneous problem for the Korteweg-de Vries equation in a bounded domain II, J. Diff. Eqns, to appear.

  59. B. Y. Zhang, Forced oscillations of a regularized long-wave equation and their global stability, Differential Equations and Computational Simulations (Chengdu; 1999), World Scientific Publishing, River Edge, NJ, 2000, 456{463.

  60. B. Y. Zhang, Forced oscillation of the Korteweg-de Vries-Burgers equation and its stability, Control of Nonlinear Distributed Parameter Systems, College Station, TX, 1999, Lecture Notes in Pure and Appl. Math., 218, Dekker, New York, 2001, 337–357.

  61. Y. M. Yang and B. Y. Zhang, Forced oscillations of a damped Benjamin-Bona-Mahony equation in a quarter plane, Control theory of partial differential equations, Lect. Notes Pure Appl. Math., Chapman & Hall/CRC, Boca Raton, FL, 2005, 242: 375–386.

  62. M. Usman and B. Y. Zhang, Forced oscillations of a class of nonlinear dispersive wave equations and their stability, J. Syst. Sci. & Complexity, 2007, 20: 284–292.

    Article  MATH  MathSciNet  Google Scholar 

  63. J. L. Bona and R. Smith, The initial value problem for the Korteweg-de Vries equation, Philos. Trans. Roy. Soc. London Ser. A, 1975, 278: 555–601.

    Article  MathSciNet  Google Scholar 

  64. J. L. Bona, S. M. Sun, and B. Y. Zhang, A nonhomogeneous boundary value problem for the Korteweg-de Vries equation in a bounded domain, Commun. Partial Differential Eq., 2003, 28: 1391–1436.

    Article  MATH  MathSciNet  Google Scholar 

  65. E. Cerpa and E. Crépeau, Rapid exponential stabilization for a linear Korteweg-de Vries equation, Discrete Contin. Dyn. Syst. Ser. B, 2009, 11(3): 655–668.

    Article  MATH  MathSciNet  Google Scholar 

  66. B. Dehman, P. Gérard, and G. Lebeau, Stabilization and control for the nonlinear Schrödinger equation on a compact surface, Math. Z, 2006, 254: 729–749.

    Article  MATH  MathSciNet  Google Scholar 

  67. C. E. Kenig, G. Ponce, and L. Vega, Well-posedness of the initial value problem for the KDV equation, J. Amer. Math. Soc., 1991, 4: 323–347.

    Article  MATH  MathSciNet  Google Scholar 

  68. C. Laurent, Global controllability and stabilization for the nonlinear Schrödinger equation on some compact manifolds of dimension 3, submitted.

  69. S. Micu, J. Ortega, L. Rosier, and B. Y. Zhang, Control and stabilization of a family of Boussinesq systems, Discrete and Continuous Dynamical Systems, 2009, 24: 273–313.

    Article  MATH  MathSciNet  Google Scholar 

  70. A. F. Pazoto and L. Rosier, Stabilization of a Boussinesq system of KDV-KDV type, Systems & Control Letters, 2008, 57: 595–601.

    Article  MATH  MathSciNet  Google Scholar 

  71. L. Rosier, Exact boundary controllability for the linear Korteweg-de Vries equation–a numerical study, in Control and Partial Differential Equations (Marseille-Luminy, 1997), ESAIM Proc., 1998, 4, Soc. Math. Appl. Indust., Paris, 255–267.

  72. L. Rosier and B. Y. Zhang, Exact controllability and stabilization of the nonlinear Schrödinger equation on a bounded interval, SIAM J. Control Optim., 2009, 48: 972–992.

    Article  MathSciNet  Google Scholar 

  73. L. Rosier and B. Y. Zhang, Control and stabilization of the nonlinear Schrödinger equation on rectangles, submitted.

  74. D. L. Russell, Controllability and stabilizability theory for linear partial differential equations: Recent progress and open questions, SIAM Rev., 1978, 20: 639–739.

    Article  MATH  MathSciNet  Google Scholar 

  75. D. L. Russell and B. Y. Zhang, Smoothing and decay properties of solutions of the Korteweg-de Vries equation on a periodic domain with point dissipation, J. Math. Anal. Appl., 1995, 190: 449–488.

    Article  MATH  MathSciNet  Google Scholar 

  76. T. Tao, Nonlinear dispersive equations, local and global analysis, CBMS Regional Conference Series in Mathematics, 106. AMS, Providence, RI, 2006.

  77. R. Temam, Sur un problµeme non linéaire, J. Math. Pures Appl., 1969, 48: 159–172.

    MATH  MathSciNet  Google Scholar 

  78. B. Y. Zhang, Boundary stabilization of the Korteweg-de Vries equation, Proc. of International Conference on Control and Estimation of Distributed Parameter Systems: Nonlinear Phenomena, Vorau (Styria, Austria), July 18–24, 1993, International Series of Numerical Mathematics, Vol. 118, Birkhauser: Basel, 1994, 371–389.

  79. B. Y. Zhang, Taylor series expansion for solutions of the Korteweg-de Vries equation with respect to their initial values, J. Funct. Anal., 1995, 129: 293–324.

    Article  MATH  MathSciNet  Google Scholar 

  80. B. Y. Zhang, Analyticity of solutions for the generalized Korteweg-de Vries equation with respect to their initial datum, SIAM J. Math. Anal., 1995, 26: 1488–1513.

    Article  MATH  MathSciNet  Google Scholar 

  81. B. Y. Zhang, Exact controllability of the generalized Boussinesq equation, Control and estimation of distributed parameter systems (Vorau, 1996), 297–310, Internat. Ser. Numer. Math., 126, Birkhauser, Basel, 1998.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lionel Rosier.

Additional information

The paper is dedicated to the Institute of System Science, Academy of Mathematics and Systems Science, Chinese Academy of Sciences for its 30th anniversary.

Report of the 14th meeting of the British Association for the Advancement of Science, York, September 1844 (London 1845), pp 311{390, Plates XLVII-LVII

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosier, L., Zhang, BY. Control and stabilization of the Korteweg-de Vries equation: recent progresses. J Syst Sci Complex 22, 647–682 (2009). https://doi.org/10.1007/s11424-009-9194-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-009-9194-2

Key words

Navigation