Abstract
Ransomware, a widespread form of malware, has caused significant damage to enterprises and individuals. By encrypting the victims’ system resources and demanding a ransom to decrypt these, it aims to get financial gain. High-profile ransomware attacks possess the potential to devastate businesses, disrupt critical infrastructure, compromise sensitive data, and pose significant threats to human lives. In this research an innovative framework RansomGuard is proposed, which utilizes a static detector as well as a dynamic machine learning component to analyze events captured and gathered directly from the Windows kernel. RansomGuard utilizes Event Tracing for Windows (ETW) logs from Windows kernel providers to establish correlations in file access patterns and system processes, allowing it to pinpoint potentially malicious activities. It incorporates entropy analysis to detect potential file encryption for swift attack identification, thereby enhancing the overall security posture of Windows systems. To assess its effectiveness, the proposed framework was rigorously evaluated against 22 distinct ransomware families and the trained model was able to successfully detect even unknown ransomware strains that were not part of its initial training dataset. Experimental results demonstrate the robustness and adaptability of the proposed RansomGuard framework that achieved up to 99.87% accuracy while maintaining an exceptionally low false positive rate and is effective in combating various ransomware threats.
Similar content being viewed by others
Data availability
Data in this research paper will be shared upon request made to the corresponding author.
References
Checkpoint. 2023—The Year of Mega Ransomware Attacks (2024) URL https://blog.checkpoint.com/research/check-point-research-2023-the-year-of-mega-ransomware-attacks-with-unprecedented-impact-on-global-organizations/
IBM. Cost of a data breach 2023 | IBM (2024). https://www.ibm.com/reports/data-breach
Aldauiji, F., Batarfi, O., Bayousef, M.: Utilizing cyber threat hunting techniques to find ransomware attacks: a survey of the state of the art. IEEE Access 10, 61695–61706 (2022). https://doi.org/10.1109/ACCESS.2022.3181278
Razaulla, S., Fachkha, C., Markarian, C., Gawanmeh, A., Mansoor, W., Fung, B.C., Assi, C.: the age of ransomware: a survey on the evolution, taxonomy, and research directions. IEEE Access 11, 40698–40723 (2023). https://doi.org/10.1109/ACCESS.2023.3268535
Vasani, V., Bairwa, A.K., Joshi, S., Pljonkin, A., Kaur, M., Amoon, M.: Comprehensive analysis of advanced techniques and vital tools for detecting malware intrusion. Electronics 12(20), 4299 (2023). https://doi.org/10.3390/electronics12204299
De Gaspari, F., Hitaj, D., Pagnotta, G., De Carli, L., Mancini, L.V.: The naked sun: malicious cooperation between benign-looking processes. In: Conti, M., Zhou, J., Casalicchio, E., Spognardi, A. (eds.) Applied Cryptography and Network Security. Lecture Notes in Computer Science, pp. 254–274. Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-57878-7_13
Dalal, R., Goel, N., Darbari, R., Chauhan, O., Samal, S., Khari, M.: 0A comprehensive review on anomaly detection techniques for web data logging. In: Shamim Kaiser, M., Xie, J., Rathore, V.S. (eds.) Intelligent Strategies for ICT, pp. 211–230. Springer, Singapore (2024). https://doi.org/10.1007/978-981-97-1260-1_18
Begovic, K., Al-Ali, A., Malluhi, Q.: Cryptographic ransomware encryption detection: survey. Comput. Secur. 132, 103349 (2023). https://doi.org/10.1016/j.cose.2023.103349
lorihollasch. Filter Manager Concepts—Windows drivers (2023). https://learn.microsoft.com/en-us/windows-hardware/drivers/ifs/filter-manager-concepts
Raymond McIntosh, Timothy: RanDeter: using novel statistical and physical controls to deter ransomware attacks. Massey University (2018)
Malik, S., Shanmugam, B., Kannorpatti, K., Azam, S.: Critical feature selection for machine learning approaches to detect ransomware. Int. J. Comput. Digit. Syst. 11(1), 1167–1176 (2022). https://doi.org/10.12785/ijcds/110195
Kharaz, A., Arshad, S., Mulliner, C., Robertson, W., Kirda, E.: UNVEIL: a Large-scale, automated approach to detecting ransomware. In 25th USENIX Security Symposium (USENIX Security 16). p. 17 (2016)
Kharraz, A., Kirda, E.: Redemption: real-time protection against ransomware at end-hosts. In: Dacier, M., Bailey, M., Polychronakis, M., Antonakakis, M. (eds.) Research in Attacks, Intrusions, and Defenses. Lecture Notes in Computer Science, pp. 98–119. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66332-6_5
Gómez-Hernández, J.A., Álvarez González, L., García-Teodoro, P.: R-locker: thwarting ransomware action through a Honeyfile-based approach. Comput. Secur. 73, 389–398 (2018). https://doi.org/10.1016/j.cose.2017.11.019
Arabo, A., Dijoux, R., Poulain, T., Chevalier, G.: Detecting ransomware using process behavior analysis. Procedia Comput. Sci. 168, 289–296 (2020). https://doi.org/10.1016/j.procs.2020.02.249
Ayub, M.A., Continella, A., Siraj, A.: An I/O request packet (IRP) driven effective ransomware detection scheme using artificial neural network. In 2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science (IRI), pp. 319–324. IEEE, Las Vegas (2020). https://doi.org/10.1109/IRI49571.2020.00053
Ayub, M.A., Siraj, A., Filar, B., Gupta, M.: RWArmor: a static-informed dynamic analysis approach for early detection of cryptographic windows ransomware. Int J Inf Secur 23(1), 533–556 (2024). https://doi.org/10.1007/s10207-023-00758-z
Shaukat, S.K., Ribeiro, V.J.: RansomWall: a layered defense system against cryptographic ransomware attacks using machine learning. In 2018 10th International Conference on Communication Systems & Networks (COMSNETS), pp. 356–363. IEEE, Bengaluru (2018). https://doi.org/10.1109/COMSNETS.2018.8328219
Continella, A., Guagnelli, A., Zingaro, G., De Pasquale, G., Barenghi, A., Zanero, S., Maggi, F.: ShieldFS: a self-healing, ransomware-aware filesystem. In Proceedings of the 32nd Annual Conference on Computer Security Applications, pp. 336–347. ACM, Los Angeles (2016). https://doi.org/10.1145/2991079.2991110
Nalinipriya, G., Govarthini, V., Kayalvizhi, S., Christika, S., Vishvaja, J., Amara, K.R.: Royal: DefendR—an advanced security model using mini filter in unix multi-operating system. In 2022 8th International Conference on Smart Structures and Systems (ICSSS), pp. 1–6 (2022). https://doi.org/10.1109/ICSSS54381.2022.9782248
Morris, J., Lin, D., Smith, M.: Marcellus: fight virus like a virus: a new defense method against file-encrypting ransomware (2021). http://arxiv.org/abs/2103.11014. arXiv:2103.11014 [cs]
Bailluet, N., Le Bouder, H., Lubicz, D.: Ransomware detection using markov chain models over file headers. In Proceedings of the 18th International Conference on Security and Cryptography, pp. 403–411. SCITEPRESS—Science and Technology Publications (2021). https://doi.org/10.5220/0010513100002998
Bottazzi, G., Italiano, G.F., Spera, D.: Preventing ransomware attacks through file system filter drivers. In Conference: Proceedings of the Second Italian Conference on Cyber Security (ITASEC18) At: Milan, p. 1 (2018)
Alqahtani, A., Sheldon, F.T.: A survey of crypto ransomware attack detection methodologies: an evolving outlook. Sensors 22(5), 1837 (2022). https://doi.org/10.3390/s22051837
Joshi, Y.S., Mahajan, H., Joshi, S.N., Gupta, K.P., Agarkar, A.A.: Signature-less ransomware detection and mitigation. J. Comput. Virol. Hacking Tech. 17(4), 299–306 (2021). https://doi.org/10.1007/s11416-021-00384-0
Jung, S., Won, Y.: Ransomware detection method based on context-aware entropy analysis. Soft Comput. 22(20), 6731–6740 (2018). https://doi.org/10.1007/s00500-018-3257-z
Pont, J., Arief, B., Hernandez-Castro, J.: Why current statistical approaches to ransomware detection fail. In: Susilo, W., Deng, R.H., Guo, F., Li, Y., Intan, R. (eds.) Information Security. Lecture Notes in Computer Science, pp. 199–216. Cham, Springer (2020). https://doi.org/10.1007/978-3-030-62974-8_12
Morato Oses, D., Berrueta, E., Magaña, E., Izal, M.: A chronological evolution model for crypto-ransomware detection based on encrypted file-sharing traffic. SSRN Electronic Journal (2022). https://doi.org/10.2139/ssrn.4074557
Berrueta, E., Morato, D., Magaña, E., Izal, M.: Crypto-ransomware detection using machine learning models in file-sharing network scenarios with encrypted traffic. Expert Syst. Appl. 209, 118299 (2022). https://doi.org/10.1016/j.eswa.2022.118299
Xia, T., Sun, Y., Zhu, S., Rasheed, Z., Shafique, K.: Toward a network-assisted approach for effective ransomware detection. EAI Endorsed Trans. Secur. Saf. (2021). https://doi.org/10.4108/eai.28-1-2021.168506
Hirano, M., Hodota, R., Kobayashi, R.: RanSAP: an open dataset of ransomware storage access patterns for training machine learning models. Forensic Sci. Int. Digit. Investig. 40, 301314 (2022). https://doi.org/10.1016/j.fsidi.2021.301314
Tang, F., Ma, B., Li, J., Zhang, F., Su, J., Ma, J.: RansomSpector: an introspection-based approach to detect crypto ransomware. Comput. Secur. 97, 101997 (2020). https://doi.org/10.1016/j.cose.2020.101997
Alraizza, A., Algarni, A.: Ransomware detection using machine learning: a survey. Big Data Cogn. Comput. 7(3), 143 (2023). https://doi.org/10.3390/bdcc7030143
Dalal, R.: Different ways to achieve trust in MANET. Int. J. AdHoc Netw. Syst. 2, 53–64 (2012). https://doi.org/10.5121/ijans.2012.2206
Dalal, R., Khari, M., Misra, S.: Speculative analysis of wireless network by bibliometrics tool. Wirel. Pers. Commun. 135(4), 2039–2059 (2024). https://doi.org/10.1007/s11277-024-11064-9
Dalal, R., Khari, M., Anzola, J.P., García, V.: Proliferation of opportunistic routing: a systematic review. IEEE Access (2021). https://doi.org/10.1109/ACCESS.2021.3136927
Thummapudi, K., Lama, P., Boppana, R.V.: Detection of ransomware attacks using processor and disk usage data. IEEE Access 11, 51395–51407 (2023). https://doi.org/10.1109/ACCESS.2023.3279819
Ganfure, G.O., Wu, C.F., Chang, Y.H., Shih, W.K.: DeepWare: imaging performance counters with deep learning to detect ransomware. IEEE Trans. Comput. (2022). https://doi.org/10.1109/TC.2022.3173149
Aurangzeb, S., Rais, R.N., Aleem, M., Islam, M.A., Iqbal, M.A.: On the classification of microsoft-windows ransomware using hardware profile. PeerJ Comput. Sci. (2021). https://doi.org/10.7717/peerj-cs.361
Pundir, N., Tehranipoor, M., Rahman, F.: RanStop: a hardware-assisted runtime crypto-ransomware detection technique (2020). http://arxiv.org/abs/2011.12248. arXiv:2011.12248 [cs]
MSDN. ETW framework conceptual tutorial—message analyzer (2020). https://learn.microsoft.com/en-us/message-analyzer/etw-framework-conceptual-tutorial
Blake. Monitoring file mods through ETW and velociraptor (2024). https://bmcder.com/blog/event-tracing-for-windows-monitoring-file-and-process-interactions
Ahmed, M.E., Kim, H., Camtepe, S., Nepal, S.: Peeler: profiling kernel-level events to detect ransomware. In: Bertino, E., Shulman, H., Waidner, M. (eds.) Computer Security - ESORICS 2021. Lecture Notes in Computer Science, pp. 240–260. Cham, Springer (2021). https://doi.org/10.1007/978-3-030-88418-5_12
Rana, S., Kumar, N., Handa, A., Shukla, S.K.: Automated windows behavioral tracing for malware analysis. Secur. Priv. 5(6), e253 (2022). https://doi.org/10.1002/spy2.253
Mavroeidis, V., Jøsang, A.: Data-driven threat hunting using sysmon. In Proceedings of the 2nd International Conference on Cryptography, Security and Privacy, ICCSP, pp. 82–88. Association for Computing Machinery, New York (2018). https://doi.org/10.1145/3199478.3199490
Moussaileb, R., Cuppens, N., Lanet, J.-L., Le Bouder, H.: A survey on windows-based ransomware taxonomy and detection mechanisms. ACM Comput. Surv. 54(6), 117 (2021). https://doi.org/10.1145/3453153
Moussaileb, R., Cuppens, N., Lanet, J.L., Bouder, H.L.: Ransomware detection using the dynamic analysis and machine learning: a survey and research directions. Appl. Sci. 12(1), 172 (2022). https://doi.org/10.3390/app12010172
Masid, A.G., Higuera, J.B., Higuera, J.R., Montalvo, J.A.: Application of the SAMA methodology to Ryuk malware. J. Comput. Virol. Hacking Tech. 19(2), 165–198 (2023). https://doi.org/10.1007/s11416-022-00434-1
logman. logman (2023). https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/logman
tracerpt. tracerpt (2023). https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/tracerpt
perfview. microsoft/perfview (2024). https://github.com/microsoft/perfview. original-date: 2015-03-27T21:48:45Z
krabsetw. microsoft/krabsetw (2024). https://github.com/microsoft/krabsetw. original-date: 2016-10-24T17:38:49Z
SilkETW. mandiant/SilkETW (2024). https://github.com/mandiant/SilkETW. original-date: 2019-03-19T14:35:48Z
Sealighter. pathtofile/Sealighter (2024). https://github.com/pathtofile/Sealighter. original-date: 2020-02-22T00:36:39Z
pywintrace. fireeye/pywintrace (2024). https://github.com/fireeye/pywintrace. original-date: 2017-09-08T14:27:01Z
UIforETW. google/UIforETW (2024). https://github.com/google/UIforETW. original-date: 2015-04-09T21:46:04Z
MITRE. Process Injection: Process Hollowing, Sub-technique T1055.012 - Enterprise | MITRE ATT &CK® (2024). https://attack.mitre.org/techniques/T1055/012/
Cen, M., Jiang, F., Qin, X., Jiang, Q., Doss, R.: Ransomware early detection: a survey. Comput. Netw. 239, 110138 (2024). https://doi.org/10.1016/j.comnet.2023.110138
virustotal. VirusTotal - Home (2024). https://www.virustotal.com/gui/home/upload
malwarebazaar. MalwareBazaar | Malware sample exchange (2024). https://bazaar.abuse.ch/
Monaco. fabrimagic72/malware-samples (2024). https://github.com/fabrimagic72/malware-samples. original-date: 2017-04-27T13:13:15Z
theZoo. ytisf/theZoo: A repository of LIVE malwares for your own joy and pleasure. theZoo is a project created to make the possibility of malware analysis open and available to the public (2024). https://github.com/ytisf/theZoo
NapierOne. simonrdavies/NapierOne (2024). https://github.com/simonrdavies/NapierOne. original-date: 2021-08-09T09:03:15Z
Govdocs1. Govdocs1 - Digital Corpora (2010). https://digitalcorpora.org/corpora/file-corpora/files/
Funding
This research received no external funding.
Author information
Authors and Affiliations
Contributions
M Adnan Alvi: Conceived the study, Conducted the literature review, developed the methodology, and erformed the data analysis. Drafted the initial manuscript and managed the project. Zunera Jalil: Supervised the study, assisted in data collection, and contributed to writing and reviewing the manuscript, provided critical feedback, and contributed to the final manuscript.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflicts of interest to report regarding the present study.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Alvi, M.A., Jalil, Z. RansomGuard: a framework for proactive detection and mitigation of cryptographic windows ransomware. J Comput Virol Hack Tech 20, 867–884 (2024). https://doi.org/10.1007/s11416-024-00539-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11416-024-00539-9