Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Optimally Embedding 3-Ary n-Cubes into Grids

  • Regular Paper
  • Published:
Journal of Computer Science and Technology Aims and scope Submit manuscript

Abstract

The 3-ary n-cube, denoted as \( {Q}_n^3 \), is an important interconnection network topology proposed for parallel computers, owing to its many desirable properties such as regular and symmetrical structure, and strong scalability, among others. In this paper, we first obtain an exact formula for the minimum wirelength to embed \( {Q}_n^3 \) into grids. We then propose a load balancing algorithm for embedding \( {Q}_n^3 \) into a square grid with minimum dilation and congestion. Finally, we derive an O(N2) algorithm for embedding \( {Q}_n^3 \) into a gird with balanced communication, where N is the number of nodes in \( {Q}_n^3 \). Simulation experiments are performed to verify the total wirelength and evaluate the network cost of our proposed embedding algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Hsu L H, Lin C K. Graph Theory and Interconnection Networks (1st edition). CRC, 2008.

  2. Gu M M, Hao R X. 3-extra connectivity of 3-ary n-cube networks. Information Processing Letters, 2014, 114(9): 486-491.

    Article  MathSciNet  MATH  Google Scholar 

  3. Yang Y, Wang S. A note on Hamiltonian paths and cycles with prescribed edges in the 3-ary n-cube. Information Sciences, 2015, 296(c): 42-45.

    Article  MathSciNet  MATH  Google Scholar 

  4. Hsieh S Y, Lin T J, Huang H L. Panconnectivity and edge-pancyclicity of 3-ary N-cubes. The Journal of Supercomputing, 2007, 42(2): 225-233.

    Article  Google Scholar 

  5. Dong Q, Yang X, Wang D. Embedding paths and cycles in 3-ary n-cubes with faulty nodes and links. Information Sciences, 2010, 180(1): 198-208.

    Article  MathSciNet  MATH  Google Scholar 

  6. Lv Y, Lin C K, Fan J, Jia X. Hamiltonian cycle and path embeddings in 3-ary n-cubes based on K 1,3-structure faults. Journal of Parallel and Distributed Computing. 2018, 120: 148-158.

    Article  Google Scholar 

  7. Yuan J, Liu A, Qin X, Zhang J, Li J. g-Good-neighbor conditional diagnosability measures for 3-ary n-cube networks. Theoretical Computer Science, 2016, 626: 144-162.

    Article  MathSciNet  MATH  Google Scholar 

  8. Bauer D W, Carothers C D. Scalable RF propagation modeling on the IBM Blue Gene/L and Cray XT5 supercomputers. In Proc. the 2009 Winter Simulation Conference, December 2009, pp.779-787.

  9. Abu-Libdeh H, Costa P, Rowstron A, O’Shea G, Donnelly A. Symbiotic routing in future data centers. ACM SIGCOMM Computer Communication Review, 2010, 40(4): 51-62.

    Article  Google Scholar 

  10. Wang T, Su Z Y, Xia Y, Qin B, Hamdi M. NovaCube: A low latency Torus-based network architecture for data centers. In Proc. the 2004 IEEE Global Communications Conference, December 2014, pp.2252-2257.

  11. Bezrukov S L, Chavez J D, Harper L H, Röttger M, Schroeder U P. Embedding of hypercubes into grids. In Proc. the 23rd Int. Symposium on Mathematical Foundations of Computer Science, August 1998, pp.693-701.

  12. Cheng B, Fan J, Jia X, Jia J. Parallel construction of independent spanning trees and an application in diagnosis on Möbius cubes. The Journal of Supercomputing, 2013, 65(3): 1279-1301.

    Article  Google Scholar 

  13. Wang X, Fan J, Jia X, Zhang S, Yu J. Embedding meshes into twisted-cubes. Information Sciences, 2011, 181(14): 3085-3099.

    Article  MathSciNet  MATH  Google Scholar 

  14. Wang D. Hamiltonian embedding in crossed cubes with failed links. IEEE Trans. Parallel and Distributed Systems, 2012, 23(11): 2117-2124.

    Article  Google Scholar 

  15. Wang S, Li J, Wang R. Hamiltonian paths and cycles with prescribed edges in the 3-ary n-cube. Information Sciences, 2011, 181(14): 3054-3065.

    Article  MathSciNet  MATH  Google Scholar 

  16. Fan J, Jia X, Lin X. Complete path embeddings in crossed cubes. Information Sciences, 2006, 176(22): 3332-3346.

    Article  MathSciNet  MATH  Google Scholar 

  17. Fan J, Jia X, Lin X. Embedding of cycles in twisted cubes with edge-pancyclic. Algorithmica, 2008, 51(3): 264-282.

    Article  MathSciNet  MATH  Google Scholar 

  18. Han Y, Fan J, Zhang S et al. Embedding meshes into locally twisted cubes. Information Sciences, 2010, 180(19): 3794-3805.

    Article  MathSciNet  MATH  Google Scholar 

  19. Garey M R, Johnson D S. Computers and Intractability: A Guide to the Theory of NP-Completeness (1st edition). W. H. Freeman, 1979.

  20. Nakano K. Linear layout of generalized hypercubes. International Journal of Foundations of Computer Science, 2003, 14(1): 137-156.

    Article  MathSciNet  MATH  Google Scholar 

  21. Fan W, Fan J, Lin C K, Wang G J, Cheng B, Wang R. An efficient algorithm for embedding exchanged hypercubes into grids. The Journal of Supercomputing. doi:org/10.1007/s11227-018-2612-2. (to be appeared)

  22. Miller M, Rajan R S, Parthiban N, Rajasingh I. Minimum linear arrangement of incomplete hypercubes. The Computer Journal, 2015, 58(2): 331-337.

    Article  Google Scholar 

  23. Chen Y, Shen H. Routing and wavelength assignment for hypercube in array-based WDM optical networks. Journal of Parallel and Distributed Computing, 2010, 70(1): 59-68.

    Article  MATH  Google Scholar 

  24. Yu C, Yang X, Yang L X, Zhang J. Routing and wavelength assignment for 3-ary n-cube in array-based optical network. Information Processing Letters, 2012, 112(6): 252-256.

    Article  MathSciNet  MATH  Google Scholar 

  25. Liu Y L. Routing and wavelength assignment for exchanged hypercubes in linear array optical networks. Information Processing Letters, 2015, 115(2): 203-208.

    Article  MathSciNet  MATH  Google Scholar 

  26. Wang Z, Gu H, Yang Y, Zhang H, Chen Y. An adaptive partition-based multicast routing scheme for mesh-based networks-on-chip. Computers and Electrical Engineering, 2016, 51: 235-251

    Article  Google Scholar 

  27. Xiang D, Chakrabarty K, Fujiwara H. Multicast-based testing and thermal-aware test scheduling for 3D ICs with a stacked network-on-chip. IEEE Trans. Computers, 2016, 65(9): 2767-2779.

    Article  MathSciNet  MATH  Google Scholar 

  28. Xiang D, Liu X. Deadlock-free broadcast routing in dragonfly networks without virtual channels. IEEE Trans. Parallel and Distributed Systems, 2016, 27(9): 2520-2532.

    Article  Google Scholar 

  29. Xiang D, Zhang Y, Pan Y. Practical deadlock-free fault-tolerant routing in meshes based on the planar network fault model. IEEE Trans. Computers, 2009, 58(5): 620-633.

    Article  MathSciNet  MATH  Google Scholar 

  30. Xiang D, Luo W. An efficient adaptive deadlock-free routing algorithm for torus networks. IEEE Trans. Parallel and Distributed Systems, 2012, 23(5): 800-808.

    Article  Google Scholar 

  31. Lan H, Liu L, Yu X, Gu H, Gao Y. A novel multi-controller flow schedule scheme for fat-tree architecture. In Proc. the 15th International Conf. Optical Communications and Networks, Sept. 2016, Article No. 113.

  32. Bezrukov S L, Chavez J D, Harper L H, Röttger M, Schroeder U P. The congestion of n-cube layout on a rectangular grid. Discrete Mathematics, 2000, 213(1/2/3): 13-19.

    Article  MathSciNet  MATH  Google Scholar 

  33. Heckmann R, Klasing R, Monien B, Unger W. Optimal embedding of complete binary trees into lines and grids. Journal of Parallel and Distributed Computing, 1991, 18(49): 40-56.

    MATH  Google Scholar 

  34. Manuela P, Rajasinghb I, Rajanb B, Mercy H. Exact wirelength of hypercubes on a grid. Discrete Applied Mathematics, 2009, 157(7): 1486-1495.

    Article  MathSciNet  Google Scholar 

  35. Wei W, Gu H, Wang K, Yu X, Liu X. Improving cloud-based IoT services through virtual network embedding in elastic optical inter-DC networks. IEEE Internet of Things Journal. doi:https://doi.org/10.1109/JIOT.2018.2866504.

  36. Chen C, Agrawal D P. dBCube: A new class of hierarchical multiprocessor interconnection networks with area efficient layout. IEEE Trans. Parallel and Distributed Systems, 1993, 4(12): 1332-1344.

    Article  Google Scholar 

  37. Bezrukov S L, Das S K, Elsässer R. An edge-isoperimetric problem for powers of the Petersen graph. Annals of Combinatorics, 2000, 4(2): 153-169.

    Article  MathSciNet  MATH  Google Scholar 

  38. Yu C, Yang X, He L, Zhang J. Optimal wavelength assignment in the implementation of parallel algorithms with ternary n-cube communication pattern on mesh optical network. Theoretical Computer Science, 2014, 524: 68-77.

    Article  MathSciNet  MATH  Google Scholar 

  39. Rajan R S, Manuel P, Rajasingh I, Parthiban N, Miller M. A lower bound for dilation of an embedding. The Computer Journal, 2015, 58(12): 3271-3278.

    Article  Google Scholar 

  40. Massie M L, Chun B N, Culler D E. The ganglia distributed monitoring system: Design, implementation, and experience. Parallel Computing, 2004, 30(7): 817-840.

    Article  Google Scholar 

Download references

Acknowledgment

We would like to express our sincerest appreciation to Prof. Guo-Liang Chen of University of Science and Technology of China for his constructive suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Xi Fan.

Electronic supplementary material

ESM 1

(PDF 299 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, WB., Fan, JX., Lin, CK. et al. Optimally Embedding 3-Ary n-Cubes into Grids. J. Comput. Sci. Technol. 34, 372–387 (2019). https://doi.org/10.1007/s11390-019-1893-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11390-019-1893-0

Keywords

Navigation