Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Collective Representation for Abnormal Event Detection

  • Regular Paper
  • Published:
Journal of Computer Science and Technology Aims and scope Submit manuscript

Abstract

Abnormal event detection in crowded scenes is a hot topic in computer vision and information retrieval community. In this paper, we study the problems of detecting anomalous behaviors within the video, and propose a robust collective representation with multi-feature descriptors for abnormal event detection. The proposed method represents different features in an identical representation, in which different features of the same topic will show more common properties. Then, we build the intrinsic relation between different feature descriptors and capture concept drift in the video sequence, which can robustly discriminate between abnormal events and normal events. Experimental results on two benchmark datasets and the comparison with the state-of-the-art methods validate the effectiveness of our method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Cong Y, Yuan J, Liu J. Sparse reconstruction cost for abnormal event detection. In Proc. IEEE Conference on Computer Vision and Pattern Recognition, June 2011, pp.3449-3456.

  2. Zhao B, Li F F, Xing E P. Online detection of unusual events in videos via dynamic sparse coding. In Proc. IEEE Conference on Computer Vision and Pattern Recognition, June 2011, pp.3313-3320.

  3. Zhou Y, Bai X, Liu W et al. Swarm fusion for visual tracking. International Journal of Computer Vision, 2016, 118(3): 337-363.

    Article  MathSciNet  Google Scholar 

  4. Li C, Han Z, Ye Q, Jiao J. Abnormal behavior detection via sparse reconstruction analysis of trajectory. In Proc. the 6th International Conference on Image and Graphics, August 2011, pp.807-810.

  5. Piciarelli C, Micheloni C, Foresti G L. Trajectory-based anomalous event detection. IEEE Transactions on Circuits and Systems for Video Technology, 2008, 18(11): 1544-1554.

    Article  Google Scholar 

  6. Lu X, Wang Y, Yuan Y. Alternatively constrained dictionary learning for image superresolution. IEEE Transactions on Cybernetics, 2014, 44(3): 366-377.

    Article  Google Scholar 

  7. Mehran R, Oyama A, Shah M. Abnormal crowd behavior detection using social force model. In Proc. IEEE Conference on Computer Vision and Pattern Recognition, June 2009, pp.935-942.

  8. Lu X, Yuan Y, Zheng X. Jointly dictionary learning for change detection in multispectral imagery. IEEE Transactions on Cybernetics, 2017, 47(4): 884-897.

    Article  Google Scholar 

  9. Chandola V, Banerjee A, Kumar V. Anomaly detection: A survey. ACM Computing Surveys, 2009, 41(3): 15:1-15:58.

  10. Vishwakarma S, Agrawal A. A survey on activity recognition and behavior understanding in video surveillance. The Visual Computer, 2013, 29(10): 983-1009.

    Article  Google Scholar 

  11. Borges P V K, Conci N, Cavallaro A. Video-based human behavior understanding: A survey. IEEE Transactions on Circuits and Systems for Video Technology, 2013, 23(11): 1993-2008.

    Article  Google Scholar 

  12. Bruckstein A, Donoho D, Elad M. From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Rev., 2009, 51(1): 34-81.

    Article  MathSciNet  MATH  Google Scholar 

  13. Lu X, Wu H, Yuan Y. Double constrained NMF for hyperspectral unmixing. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(5): 2746-2758.

    Article  Google Scholar 

  14. Lu X, Wang Y, Yuan Y. Graph regularized low-rank representation for destriping of hyperspectral images. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(7-1): 4009-4018.

    Article  Google Scholar 

  15. Song B, Li J, Mura M D, Li P, Plaza A, Bioucas-Dias J M, Benediktsson J A, Chanussot J. Remotely sensed image classification using sparse representations of morphological attribute profiles. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(8): 5122-5136.

    Article  Google Scholar 

  16. Lu C, Shi J, Jia J. Abnormal event detection at 150 FPS in MATLAB. In Proc. IEEE International Conference on Computer Vision, December 2013, pp.2720-2727.

  17. Mo X, Monga V, Bala R, Fan Z. Adaptive sparse representations for video anomaly detection. IEEE Transactions on Circuits and Systems for Video Technology, 2014, 24(4): 631-645.

    Article  Google Scholar 

  18. Basharat A, Gritai A, Shah M. Learning object motion patterns for anomaly detection and improved object detection. In Proc. IEEE Conference on Computer Vision and Pattern Recognition, June 2008.

  19. Yuan Y, Fang J, Wang Q. Online anomaly detection in crowd scenes via structure analysis. IEEE Transactions on Cybernetics, 2015, 45(3): 562-575.

    Article  Google Scholar 

  20. Itti L, Baldi P. A principled approach to detecting surprising events in video. In Proc. IEEE Conference on Computer Vision and Pattern Recognition, June 2005, pp.631-637.

  21. Han J, Zhang D, Hu X, Guo L, Ren J, Wu F. Background prior-based salient object detection via deep reconstruction residual. IEEE Trans. Circuits and Systems for Video Technology, 2015, 25(8): 1309-1321.

    Article  Google Scholar 

  22. Han J, Zhang D, Wen S, Guo L, Liu T, Li X. Two-stage learning to predict human eye fixations via SDAEs. IEEE Trans. Cybernetics, 2016, 46(2): 487-498.

    Article  Google Scholar 

  23. Qi W, Cheng M, Borji A, Lu H, Bai L. SaliencyRank: Twostage manifold ranking for salient object detection. Computational Visual Media, 2016, 1(4): 309-320.

    Article  Google Scholar 

  24. Cheng M, Mitra N J, Huang X, Torr P H S, Hu S. Global contrast based salient region detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3): 569-582.

    Article  Google Scholar 

  25. Boiman O, Irani M. Detecting irregularities in images and in video. International Journal of Computer Vision, 2007, 74(1): 17-31.

    Article  Google Scholar 

  26. Kratz L, Nishino K. Anomaly detection in extremely crowded scenes using spatio-temporal motion pattern models. In Proc. IEEE Conference on Computer Vision and Pattern Recognition, June 2009, pp.1446-1453.

  27. Wu S, Moore B, Shah M. Chaotic invariants of Lagrangian particle trajectories for anomaly detection in crowded scenes. In Proc. IEEE Conference on Computer Vision and Pattern Recognition, June 2010, pp.2054-2060.

  28. Cheng H Y, Hwang J N. Integrated video object tracking with applications in trajectory-based event detection. Journal of Visual Communication and Image Representation, 2011, 22(7): 673-685.

    Article  Google Scholar 

  29. Cui X, Liu Q, Gao M, Metaxas D N. Abnormal detection using interaction energy potentials. In Proc. the 24th IEEE Conference on Computer Vision and Pattern Recognition, June 2011, pp.3161-3167.

  30. Saligrama V, Chen Z. Video anomaly detection based on local statistical aggregates. In Proc. IEEE Conference on Computer Vision and Pattern Recognition, June 2012, pp.2112-2119.

  31. Popoola O P, Wang K. Video-based abnormal human behavior recognition — A review. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 2012, 42(6): 865-878.

    Article  Google Scholar 

  32. Sodemann A A, Ross M P, Borghetti B J. A review of anomaly detection in automated surveillance. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 2012, 42(6): 1257-1272.

    Article  Google Scholar 

  33. Li T, Chang H, Wang M, Ni B, Hong R, Yan S. Crowded scene analysis: A survey. IEEE Transactions on Circuits and Systems for Video Technology, 2015, 25(3): 367-386.

    Article  Google Scholar 

  34. Zhong H, Shi J, Visontai M. Detecting unusual activity in video. In Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Volume 2, June 27-July 2, 2004, pp.819-826.

  35. Benezeth Y, Jodoin P M, Saligrama V, Rosenberger C. Abnormal events detection based on spatio-temporal cooccurences. In Proc. IEEE Conference on Computer Vision and Pattern Recognition, June 2009, pp.2458-2465.

  36. del Rincon J, Lewandowski M, Nebel J C, Makris D. Generalized Laplacian eigenmaps for modeling and tracking human motions. IEEE Transactions on Cybernetics, 2014, 44(9): 1646-1660.

    Article  Google Scholar 

  37. Azhar F, Tjahjadi T. Significant body point labeling and tracking. IEEE Transactions on Cybernetics, 2014, 44(9): 1673-1685.

    Article  Google Scholar 

  38. Xie Y, Zhang W, Li C, Lin S, Qu Y, Zhang Y. Discriminative object tracking via sparse representation and online dictionary learning. IEEE Transactions on Cybernetics, 2014, 44(4): 539-553.

    Article  Google Scholar 

  39. Yang Y, Hu W, Xie Y, Zhang W, Zhang T. Temporal restricted visual tracking via reverse-low-rank sparse learning. IEEE Transactions on Cybernetics, 2016, 47(2): 485-498.

    Google Scholar 

  40. Zhang Y, Chen X, Lin L, Xia C, Zou D. High-level representation sketch for video event retrieval. Science in China Series F: Information Sciences, 2016, 59(7): 072103.

    Google Scholar 

  41. Adam A, Rivlin E, Shimshoni I, Reinitz D. Robust real-time unusual event detection using multiple fixed-location monitors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(3): 555-560.

    Article  Google Scholar 

  42. Kim J, Grauman K. Observe locally, infer globally: A spacetime MRF for detecting abnormal activities with incremental updates. In Proc. IEEE Conference on Computer Vision and Pattern Recognition, June 2009, pp.2921-2928.

  43. Mahadevan V, Li W, Bhalodia V, Vasconcelos N. Anomaly detection in crowded scenes. In Proc. the 23rd IEEE Conference on Computer Vision and Pattern Recognition, June 2010, pp.1975-1981.

  44. Li W, Mahadevan V, Vasconcelos N. Anomaly detection and localization in crowded scenes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(1): 18-32.

    Article  Google Scholar 

  45. Cong Y, Yuan J, Liu J. Abnormal event detection in crowded scenes using sparse representation. Pattern Recognition, 2013, 46(7): 1851-1864.

    Article  Google Scholar 

  46. Thida M, Eng H L, Remagnino P. Laplacian eigenmap with temporal constraints for local abnormality detection in crowded scenes. IEEE Transactions on Cybernetics, 2013, 43(6): 2147-2156.

    Article  Google Scholar 

  47. Kaltsa V, Briassouli A, Kompatsiaris I, Hadjileontiadis L J, Strintzis M G. Swarm intelligence for detecting interesting events in crowded environments. IEEE Transactions on Image Processing, 2015, 24(7): 2153-2166.

    Article  MathSciNet  Google Scholar 

  48. Reddy V, Sanderson C, Lovell B C. Improved anomaly detection in crowded scenes via CellBased analysis of foreground speed, size and texture. In Proc. IEEE Conference on Computer Vision and Pattern Recognition, June 2011, pp.55-61.

  49. Censor Y, Zenios S. Parallel optimization: Theory, algorithms and applications. Oxford University Press, 1997.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renzhen Ye.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, R., Li, X. Collective Representation for Abnormal Event Detection. J. Comput. Sci. Technol. 32, 470–479 (2017). https://doi.org/10.1007/s11390-017-1737-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11390-017-1737-8

Keywords

Navigation