Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Recent progress and challenges on the removal of per- and poly-fluoroalkyl substances (PFAS) from contaminated soil and water

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

A Correction to this article was published on 04 July 2022

This article has been updated

Abstract

Currently, due to an increase in urbanization and industrialization around the world, a large volume of per- and poly-fluoroalkyl substances (PFAS) containing materials such as aqueous film-forming foam (AFFF), protective coatings, landfill leachates, and wastewater are produced. Most of the polluted wastewaters are left untreated and discharged into the environment, which causes high environmental risks, a threat to human beings, and hampered socioeconomic growth. Developing sustainable alternatives for removing PFAS from contaminated soil and water has attracted more attention from policymakers and scientists worldwide under various conditions. This paper reviews the recent emerging technologies for the degradation or sorption of PFAS to treat contaminated soil and water. It highlights the mechanisms involved in removing these persistent contaminants at a molecular level. Recent advances in developing nanostructured and advanced reduction remediation materials, challenges, and perspectives in the future are also discussed. Among the variety of nanomaterials, modified nano-sized iron oxides are the best sorbents materials due to their specific surface area and photogenerated holes and appear extremely promising in the remediation of PFAS from contaminated soil and water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Change history

Abbreviations

PASF:

Perfluoroalkane sulfonyl fluoride

PFAA:

Perfluoroalkyl acids

PFAS:

Per- and polyfuoroalkyl substances

PFBA:

Perfluorobutanoic acid

PFBS:

Perfluorobutane sulfonic acid

PFCA:

Perfluoroalkyl carboxylic acids

PFDA:

Perfluorodecanoic acid

PFDoDA:

Perfluorododecanoic acid

PFDS:

Perfluorodecane sulfonic acid

PFHpA:

Perfluoroheptanoic acid

PFHpS:

Perfluoroheptane sulfonic acid

PFHxA:

Perfluorohexanoic acid

PFHxDA:

Perfluorohexadecanoate

PFHxS:

Perfluorohexane sulfonic acid

PFNA:

Perfluorononanoic acid

PFNS:

Perfluorononane sulfonic acid

PFOA:

Perfluorooctanoic acid

PFOS:

Perfluorooctane sulfonic acid

References

  • Ahmed MB, Alam MM, Zhou JL, Xu B, Johir MAH, Karmakar AK, Rahman MS, Hossen J, Hasan AK, Moni MA (2020) Advanced treatment technologies efficacies and mechanism of per-and poly-fluoroalkyl substances removal from water. Process Saf Environ Prot 136:1–14. https://doi.org/10.1016/j.psep.2020.01.005

    Article  CAS  Google Scholar 

  • Ahrens L (2011) Polyfluoroalkyl compounds in the aquatic environment: a review of their occurrence and fate. J Environ Monit 13(1):20–31. https://doi.org/10.1039/c0em00373e

    Article  CAS  Google Scholar 

  • Ankley GT, Cureton P, Hoke RA, Houde M, Kumar A, Kurias J, Lanno R, McCarthy C, Newsted J, Salice CJ, Sample BE (2021) Assessing the ecological risks of per-and polyfluoroalkyl substances: current state-of-the science and a proposed path forward. Environ Toxicol Chem 40(3):564–605

    Article  CAS  Google Scholar 

  • Armstrong DL, Lozano N, Rice CP, Ramirez M, Torrents A (2016) Temporal trends of perfluoroalkyl substances in limed biosolids from a large municipal water resource recovery facility. J Environ Manage 165:88–95. https://doi.org/10.1016/j.jenvman.2015.09.023

  • Askeland M, Clarke BO, Cheema SA, Mendez A, Gasco G, Paz-Ferreiro J (2020) Biochar sorption of PFOS, PFOA, PFHxS and PFHxA in two soils with contrasting texture. Chemosphere 249:126072

    Article  CAS  Google Scholar 

  • Ateia M, Attia MF, Maroli A, Tharayil N, Alexis F, Whitehead DC, Karanfil T (2018) Rapid removal of poly-and perfluorinated alkyl substances by poly (ethylenimine)-functionalized cellulose microcrystals at environmentally relevant conditions. Environ Sci Technol Lett 5(12):764–769

    Article  CAS  Google Scholar 

  • Ateia M, Arifuzzaman MD, Pellizzeri S, Attia MF, Tharayil N, Anker JN, Karanfil T (2019) Cationic polymer for selective removal of GenX and short-chain PFAS from surface waters and wastewaters at nanogram/liter levels. Water Res 163:114874

    Article  CAS  Google Scholar 

  • Awad R, Zhou Y, Nyberg E, Namazkar S, Yongning W, Xiao Q, Sun Y, Zhu Z, Bergman Å, Benskin JP (2020) Emerging per-and polyfluoroalkyl substances (PFAS) in human milk from Sweden and China. Environ Sci Process Impacts 22(10):2023–2030

    Article  CAS  Google Scholar 

  • Banzhaf S, Filipovic M, Lewis J, Sparrenbom CJ, Barthel R (2017) A review of contamination of surface-, ground-, and drinking water in Sweden by perfluoroalkyl and polyfluoroalkyl substances (PFASs). Ambio 46(3):335–346

    Article  CAS  Google Scholar 

  • Bao Y, Niu J, Xu Z, Gao D, Shi J, Sun X, Huang Q (2014) Removal of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) from water by coagulation: mechanisms and influencing factors. J Colloid Interface Sci 434:59–64. https://doi.org/10.1016/j.jcis.2014.07.041

    Article  CAS  Google Scholar 

  • Baronas R (2017) Nonlinear effects of diffusion limitations on the response and sensitivity of amperometric biosensors. Electrochim Acta 240:399–407

    Article  CAS  Google Scholar 

  • Barzen-Hanson KA, Roberts SC, Choyke S, Oetjen K, McAlees A, Riddell N, McCrindle R, Ferguson PL, Higgins CP, Field JA (2017) Discovery of 40 classes of per-and poly-fluoroalkyl substances in historical aqueous film-forming foams (AFFFs) and AFFF-impacted groundwater. Environ Sci Technol 51(4):2047–2057. https://doi.org/10.1021/acs.est.6b05843

    Article  CAS  Google Scholar 

  • Belkouteb N, Frankecor V, McCleaf P, Köhler S, Ahrens L, 2020. Removal of per-and polyfluoroalkyl substances (PFASs) in a full-scale drinking water treatment plant long-term performance of granular activated carbon (GAC) and influence of flow-rate. Water Res 182https://doi.org/10.1016/j.watres.2020.115913

  • Birch QT, Birch ME, Nadagouda MN, Dionysiou DD (2022) Nano-enhanced treatment of per-fluorinated and poly-fluorinated alkyl substances (PFAS). Curr Opin Chem Eng 35:100779

    Article  Google Scholar 

  • Bizkarguenaga E, Zabaleta I, Mijangos L, Iparraguirre A, Fernández LA, Prieto A, Zuloaga O (2016) Uptake of perfluorooctanoic acid perfluorooctane sulfonate and perfluorooctane sulfonamide by carrot and lettuce from compost amended soil. Sci Total Environ 571:444–451. https://doi.org/10.1016/j.scitotenv.2016.07.010

    Article  CAS  Google Scholar 

  • Blaine AC, Rich CD, Hundal LS, Lau Ch, Mills MA, Harris KM, Higgins ChP (2013) Uptake of Perfluoroalkyl Acids into Edible Crops via Land Applied Biosolids: Field and Greenhouse Studies. Environ Sci Technol 47(24):14062–14069. https://doi.org/10.1021/es403094q

    Article  CAS  Google Scholar 

  • Blaine AC, Rich CD, Sedlacko EM, Hundal LS, Kumar K, Lau Ch, Mills MA, Harris KM, Higgins ChP (2014) Perfluoroalkyl acid distribution in various plant compartments of edible crops grown in biosolids-amended soils. Environ Sci Technol 48(14):7858–7865. https://doi.org/10.1021/es500016s

  • Bolan N, Sarkar B, Yan Y, Li Q, Wijesekara H, Kanna K, Tsang DC, Schauerte M, Bosch J, Noll H, Ok YS (2021) Remediation of poly-and perfluoroalkyl substances (PFAS) contaminated soils–to mobilize or to immobilize or to degrade? J Hazard Mater 401:123892

    Article  CAS  Google Scholar 

  • Bolan N, Sarkar B, Vithanage M, Singh G, Tsang DCW, Mukhopadhyay R, Ramadass K et al (2021) Distribution, behavior, bioavailability, remediation of poly-and per-fluoroalkyl substances (PFAS) in solid biowastes and biowaste-treated soil. Environ Int 155:106600

    Article  CAS  Google Scholar 

  • Boo C, Wang Y, Zucker I, Choo Y, Osuji CO, Elimelech M (2018) High-performance nano-filtration membrane for effective removal of perfluoroalkyl substances at high water recovery. Environ Sci Technol 52:7279–7288. https://doi.org/10.1021/acs.est.8b01040

    Article  CAS  Google Scholar 

  • Borthakur A, Cranmer BK, Dooley GP, Blotevogel J, Mahendra S, Mohanty SK (2021) Release of soil colloids during flow interruption increases the pore-water PFAS concentration in saturated soil. Environ Pollut 286:117297

    Article  CAS  Google Scholar 

  • Brown PR, Kim D, Lunt RR, Zhao N, Bawendi MG, Grossman JC, Bulovic V (2014) Energy level modification in lead sulfide quantum dot thin films through ligand exchange. ACS Nano 8(6):5863–5872. https://doi.org/10.1021/nn500897c

    Article  CAS  Google Scholar 

  • Cao H, Zhang W, Wang C, Liang Y (2020) Sonochemical degradation of poly-and perfluoroalkyl substances–a review. Ultrason Sonochem 69:105245

    Article  CAS  Google Scholar 

  • Cao X, Zhang R, Tan W-m, Wei C, Wang J, Liu Y-m, Chen K-q, Ouyang P-k (2016) Plasma treatment of multi-walled carbon nanotubes for lipase immobilization. Korean J Chem Eng 33(5):1653–1658. https://doi.org/10.1007/s11814-016-0002-0

    Article  CAS  Google Scholar 

  • Chen X, Xia X, Wang X, Qiao J, Chen H (2011) A comparative study on sorption of perfluorooctane sulfonate (PFOS) by chars, ash, and carbon nanotubes. Chemosphere 83(10):1313–1319. https://doi.org/10.1016/j.chemosphere.2011.04.018

    Article  CAS  Google Scholar 

  • Chen H, Wang X, Zhang C, Sun R, Han J, Han G, Yang W, He X (2017) Occurrence and inputs of perfluoroalkyl substances (PFASs) from rivers and drain outlets to the Bohai Sea. China Environ Pollut 221:234–243

    Article  CAS  Google Scholar 

  • Chen H, Yao Y, Zhao Z, Wang Y, Wang Q, Ren C, Wang B, Sun H, Alder AC, Kannan K (2018) Multimedia distribution and transfer of per-and polyfluoroalkyl substances (PFASs) surrounding two fluorochemical manufacturing facilities in Fuxin. China Environ Sci Technol 52(15):8263–8271

    Article  CAS  Google Scholar 

  • Chen Q, Zhu P, Xiong J, Gao L, Tan K (2020) A new dual-recognition strategy for hybrid ratiometric and ratiometric sensing perfluorooctane sulfonic acid based on high fluorescent carbon dots with ethidium bromide. Spectrochim Acta Part A Mol Biomol Spectrosc 224:117362

    Article  CAS  Google Scholar 

  • Cheng YH, Barpaga D, Soltis JA, Shutthanandan V, Kargupta R, Han KS, McGrail BP, Motkuri RK, Basuray S, Chatterjee S (2020) Metal–organic framework-based microfluidic impedance sensor platform for ultrasensitive detection of perfluorooctanesulfonate. ACS Appl Mater Interfaces 12:10503–10514

    Article  CAS  Google Scholar 

  • Chetverikov SP, Sharipov DA, Korshunova TY, Loginov O (2017) Degradation of perfluorooctanyl sulfonate by strain Pseudomonas plecoglossicida 2.4-D. Appl Biochem Microbiol 53:533–538. https://doi.org/10.1134/S0003683817050027

    Article  CAS  Google Scholar 

  • Chinthakindi S, Zhu H, Kannan K (2021) An exploratory analysis of poly-and per-fluoroalkyl substances in pet food packaging from the United States. Environ Technol Innov 21:101247

    Article  CAS  Google Scholar 

  • Cordner A, Vanessa Y, Schaider LA, Rudel RA, Richter L, Brown P (2019a) Guideline levels for PFOA and PFOS in drinking water: the role of scientific uncertainty, risk assessment decisions, and social factors. J Eposure Sci Environ Epidemiol 29(2):157–171

    Article  CAS  Google Scholar 

  • Cordner A, de la Rosa VY, Schaider LA, Rudel RA, Richter L, Brown P (2019b) Guideline levels for PFOA and PFOS in drinking water: the role of scientific uncertainty, risk assessment decisions, and social factors. J Expo Sci Environ Epidemiol 29:157–171

    Article  CAS  Google Scholar 

  • Cui J, Gao P, Deng Y (2020) Destruction of per-and polyfluoroalkyl substances (PFAS) with advanced reduction processes (ARPs): a critical review. Environ Sci Technol 54(7):3752–3766

    Article  CAS  Google Scholar 

  • Dai X, Xie Z, Dorian B, Gray S, Zhang J (2019) Comparative study of PFAS treatment by UV, UV/ozone, and fractionations with air and ozonated air. Environ Sci: Water Res Technol 5(11):1897–1907

    CAS  Google Scholar 

  • Dalahmeh S, Tirgani S, Komakech AJ, Niwagaba CB, Ahrens L (2018) Per-and polyfluoroalkyl substances (PFASs) in water, soil and plants in wetlands and agricultural areas in Kampala, Uganda. Sci Total Environ 631:660–667

    Article  CAS  Google Scholar 

  • Datsyuk V, Kalyva M, Papagelis K, Parthenios J, Tasis D, Siokou A, Kallitsis I, Galiotis C (2008) Chemical oxidation of multiwalled carbon nanotubes. Carbon 46(6):833–840. https://doi.org/10.1016/j.carbon.2008.02.012

    Article  CAS  Google Scholar 

  • Dauchy X, Boiteux V, Colin A, Bach C, Rosin C, Munoz JF (2019) Poly-and perfluoroalkyl substances in runoff water and wastewater sampled at a firefighter training area. Arch Environ Contam Toxicol 76:206–215. https://doi.org/10.1007/s00244-018-0585-z

    Article  CAS  Google Scholar 

  • Domingo JL, Nadal M, 2019. Human exposure to per-and polyfluoroalkyl substances (PFAS) through drinking water: a review of the recent scientific literature. Environmental Research, 177https://doi.org/10.1016/j.envres.2019.108648

  • Dreveton A (2016) Overview of the fluorochemicals industrial sectors. Procedia Eng 138:240–247. https://doi.org/10.1016/j.proeng.2016.02.081

    Article  Google Scholar 

  • Du Z, Deng S, Bei Y, Huang Q, Wang B, Huang J, Yu G (2014) Adsorption behaviour and mechanism of perfluorinated compounds on various adsorbents—a review. J Hazard Mater 274:443–454. https://doi.org/10.1016/j.jhazmat.2014.04.038

    Article  CAS  Google Scholar 

  • Du Z, Deng S, Chen Y, Wang B, Huang J, Wang Y, Yu G (2015) Removal of perfluorinated carboxylates from washing wastewater of perfluorooctanesulfonyl fluoride using activated carbons and resins. J Hazard Mater 286:136–143

    Article  CAS  Google Scholar 

  • Duong HT, Kadokami K, Shirasaka H, Hidaka R, Chau HTC, Kong L, Nguyen TQ, Nguyen TT (2015) Occurrence of perfluoroalkyl acids in environmental waters in Vietnam. Chemosphere 122:115–124. https://doi.org/10.1016/j.chemosphere.2014.11.023

    Article  CAS  Google Scholar 

  • EFSA (2018) European Food Safety Authority (EFSA) Scientific opinion on the risk to human health related to the presence of perfluorooctane sulfonic acid and perfluorooctanoic acid in food. EFSA Journal 2018 16(12):5194

    Google Scholar 

  • EPA. 2020. Risk Management for Per-and Polyfluoroalkyl Substances (PFAS) under TSCA. The United States Environmental Protection Agency. Available from: https://www.epa.gov/assessing-and-managing-chemicals-under-tsca/risk-management-and-polyfluoroalkyl-substances-pfas#tab-3.

  • Eriksson U, Kärrman A, Rotander A, Mikkelsen B, Dam M (2013) Perfluoroalkyl substances (PFASs) in food and water from Faroe Islands. Environ Sci Pollut Res 20:7940–7948

    Article  CAS  Google Scholar 

  • Espana VAA, Mallavarapu M, Naidu R (2015) Treatment technologies for aqueous perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA): a critical review with an emphasis on field testing. Environ Technol Innov 4:168–181. https://doi.org/10.1016/j.eti.2015.06.001

    Article  Google Scholar 

  • Fang C, Dharmarajan R, Megharaj M, Naidu R (2017) Gold nanoparticle-based optical sensors for selected anionic contaminants. TrAC, Trends Anal Chem 86:143–154

    Article  CAS  Google Scholar 

  • Fang C, Zhang X, Dong Z, Wang L, Megharaj M, Naidu R (2018) Smartphone app-based/portable sensor for the detection of fluoro-surfactant PFOA. Chemosphere 191:381–388

    Article  CAS  Google Scholar 

  • FIDRA, 2020, PFAS- free. The Science Fidra 25 Westgate, North Berwick EH39 4A Ghttps://www.pfasfree.org.uk/about-pfas/pfas-science-the-basics.

  • Filipovic M, Laudon H, McLachlan MS, Berger U (2015) Mass balance of perfluorinated alkyl acids in a pristine boreal catchment. Environ Sci Technol 49:12127–12135

    Article  CAS  Google Scholar 

  • Focus Environmental Inc. (2020). Thermal oxidizer performance test report: Chemours Company Fayetteville Works. Retrieved from https://www.chemours.com/en/-/media/files/corporate/fayettevilleworks/2020-03-thermal-oxidizer-test-report.pdf

  • Franke V, McCleaf P, Lindegren K, Ahrens L (2019) Efficient removal of per-and polyfluoroalkyl substances (PFASs) in drinking water treatment: nano-filtration combined with active carbon or anion exchange. Environ Sci: Water Res Technol 5(11):1836–1843

    CAS  Google Scholar 

  • Gallen C, Drage D, Eaglesham G, Grant S, Bowman M, Mueller JF (2017) Australia-wide assessment of perfluoroalkyl substances (PFASs) in landfill leachates. J Hazard Mater 331:132–141

    Article  CAS  Google Scholar 

  • Ghisi R, Manzetti S (2019) Accumulation of perfluorinated alkyl substances (PFAS) in agricultural plants: A review. Environ Res J 169:326–341

    Article  CAS  Google Scholar 

  • Giesy JP, Kannan K (2001) Global distribution of perfluorooctane sulfonate in wildlife. Environ Sci Technol 35:1339–1342. https://doi.org/10.1021/es001834k

    Article  CAS  Google Scholar 

  • Giri RR, Ozaki H, Guo X, Takanami R, Taniguchi S (2014) Oxidative–reductive photodecomposition of perfluorooctanoic acid in water. Int J Environ Sci Technol 11(5):1277–1284

    Article  CAS  Google Scholar 

  • Gobelius L, Hedlund J, Dürig W, Tröger R, Lilja K, Wiberg K, Ahrens L (2018) Per-and poly-fluoroalkyl substances in Swedish groundwater and surface water: implications for environmental quality standards and drinking water guidelines. Environ Sci Technol 52(7):4340–4349. https://doi.org/10.1021/acs.est.7b05718

    Article  CAS  Google Scholar 

  • Goh SXL, Lee HK (2017) An alternative perspective of hollow fiber-mediated extraction: bundled hollow fiber array-liquid-phase microextraction with sonication-assisted desorption and liquid chromatography–tandem mass spectrometry for determination of estrogens in aqueous matrices. J Chromatogr 1488:26–36

    Article  CAS  Google Scholar 

  • Gole VL, Sierra-Alvarez R, Peng H, Giesy JP, Deymier P, Keswani M (2018) Sono-chemical treatment of per-and poly-fluoroalkyl compounds in aqueous film-forming foams uses a large-scale multi-transducer dual-frequency based acoustic reactor. Ultrason Sonochem 45:213–222

    Article  CAS  Google Scholar 

  • Gong Y, Wang L, Liu J, Tang J, Zhao D (2016) Removal of aqueous perfluorooctanoic acid (PFOA) using starch-stabilized magnetite nanoparticles. Sci Total Environ 562:191–200. https://doi.org/10.1016/j.scitotenv.2016.03.100

    Article  CAS  Google Scholar 

  • Gorrochategui E, Pérez-Albaladejo E, Casas J, Lacorte S, Porte C (2014) Perfluorinated chemicals: Differential toxicity inhibition of aromatase activity and alteration of cellular lipids in human placental cells. Toxicol Appl Pharmacol 277(2):124–130. https://doi.org/10.1016/j.taap.2014.03.012

    Article  CAS  Google Scholar 

  • Grandjean P, Clapp R (2015) Perfluorinated alkyl substances: emerging insights into health risks. New Solutions: A J Environ Occupational Health Policy 25(2):147–163. https://doi.org/10.1177/1048291115590506

    Article  Google Scholar 

  • Grandjean P, Heilmann C, Weihe P, Nielsen F, Mogensen UB, Timmermann A, Budtz-Jørgensen E (2017) Estimated exposures to perfluorinated compounds in infancy predict attenuated vaccine antibody concentrations at age 5-years. J Immunotoxicol 14(1):188–195

    Article  CAS  Google Scholar 

  • Grønnestad R, Schlenk D, Krøkje Å, Jaspers VL, Jenssen BM, Coffin S, Bertotto LB, Giroux M, Lyche JL, Arukwe A (2021) Alteration of neuro-dopamine and steroid hormone homeostasis in wild Bank voles in relation to tissue concentrations of PFAS at a Nordic skiing area. Sci Total Environ 756:143745

    Article  CAS  Google Scholar 

  • Gu Y, Liu T, Wang H, Han H, Dong W (2017) Hydrated electron-based decomposition of perfluorooctane sulfonate (PFOS) in the VUV/sulfite system. Sci Total Environ 607:541–548

    Article  CAS  Google Scholar 

  • Gu P, Zhang C, Sun Z, Zhang H, Zhou Q, Lin S, Rong J, Hoffmann MR (2020) Enhanced photoreductive degradation of perfluorooctanesulfonate by UV irradiation in the presence of ethylenediaminetetraacetic acid. Chem Eng J 379:122338

    Article  CAS  Google Scholar 

  • Guelfo JL, Higgins CP (2013) Subsurface transport potential of perfluoroalkyl acids at aqueous film-forming foam (AFFF)-impacted sites. Environ Sci Technol 47(9):4164–4171. https://doi.org/10.1021/es3048043

    Article  CAS  Google Scholar 

  • Hale SE, Arp HPH, Slinde GA, Wade EJ, Bjørseth K, Breedveld GD, Straith BF, Moe KG, Jartun M, Høisæter Å (2017) Sorbent amendment as a remediation strategy to reduce PFAS mobility and leaching in a contaminated sandy soil from a Norwegian firefighting training facility. Chemosphere 17:19–18. https://doi.org/10.1016/j.chemosphere.2016.12.057

    Article  CAS  Google Scholar 

  • Han R, Hu M, Zhong Q, Wan C, Liu L, Li F, Zhang F, Ding W (2018) Perfluorooctane sulphonate induces oxidative hepatic damage via mitochondriadependent and NF-κB/TNF-α-mediated pathway. Chemosphere 191:1056–1106

    Article  CAS  Google Scholar 

  • Hansen KJ, Clemen LA, Ellefson ME, Johnson HO (2001) Compound-specific, quantitative characterization of organic fluorochemicals in biological matrices. Environ Sci Technol 35(4):766–770. https://doi.org/10.1021/es001489z

    Article  CAS  Google Scholar 

  • Hori H, Nagaoka Y, Yamamoto A, Sano T, Yamashita N, Taniyasu S, Kutsuna S, Osaka I, Arakawa R (2006) Efficient decomposition of environmentally persistent perfluorooctanesulfonate and related fluorochemicals using zero valent iron in subcritical water. Environ Sci Technol 2006(40):1049–1054. https://doi.org/10.1021/es0517419

    Article  CAS  Google Scholar 

  • Hori H, Nagaoka Y, Murayama M, Kutsuna S (2008) Efficient decomposition of perfluorocarboxylic acids and alternative fluorochemical surfactants in hot water. Environ Sci Technol 42:7438–7443. https://doi.org/10.1021/es800832p

    Article  CAS  Google Scholar 

  • Hu Y, Liu G, Rood J, Liang L, Bray GA, de Jonge L, Coull B, Furtado JD, Qi L, Grandjean P, Sun Q (2019) Perfluoroalkyl substances and changes in bone mineral density: a prospective analysis in the POUNDS-LOST study. Environ Res 179:108775

    Article  CAS  Google Scholar 

  • Huang S, Jaffé PR (2019) Defluorination of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) by Acidimicrobium sp strain A6. Environ Sci Technol 53(19):11410–11419

    Article  CAS  Google Scholar 

  • Huang D, Yin L, Lu X, Lin S, Niu Z, Niu J (2017) Directional electron transfer mechanisms with graphene quantum dots as the electron donor for photodecomposition of perfluorooctane sulfonate. Chem Eng J 323:406–414

    Article  CAS  Google Scholar 

  • Hwang J-H, Pathak P, Wang X, Rodriguez KL, Park J, Cho HJ, Lee WH (2019) A novel Fe-Chitosan-coated carbon electrode sensor for in situ As (III) detection in mining wastewater and soil leachate. Sens Actuators B Chem 294:89–97

    Article  CAS  Google Scholar 

  • Inyang M, Dickenson ER (2017) The use of carbon adsorbents for the removal of perfluoroalkyl acids from potable reuse systems. Chemosphere 184:168–175

    Article  CAS  Google Scholar 

  • Ji W, Xiao L, Ling Y, Ching C, Matsumoto M, Bisbey RP, Helbling DE, Dichtel WR (2018) Removal of GenX and perfluorinated alkyl substances from water by amine-functionalized covalent organic frameworks. J Am Chem Soc 140(40):12677–12681

    Article  CAS  Google Scholar 

  • Jiang F, Zhao H, Chen H, Xu C, Chen J (2016) Enhancement of photocatalytic decomposition of perfluorooctanoic acid on CeO 2/In 2 O 3. RSC Adv 6(76):72015–72021. https://doi.org/10.1039/C6RA09856H

    Article  CAS  Google Scholar 

  • Jin L, Zhang P (2015) Photochemical decomposition of perfluorooctane sulfonate (PFOS) in an anoxic alkaline solution by 185 nm vacuum ultraviolet. Chem Eng J 280:241–247

    Article  CAS  Google Scholar 

  • Johnson RL, Anschutz AJ, Smolen JM, Simcik MF, Penn RL (2007) The adsorption of perfluorooctane sulfonate onto sand, clay, and iron oxide surfaces. J Chem Eng Data 52(4):1165–1170. https://doi.org/10.1021/je060285g

    Article  CAS  Google Scholar 

  • Kalra SS, Cranmer B, Dooley G, Hanson AJ, Maraviov S, Mohanty SK, Blotevogel J, Mahendra S (2021) Sonolytic destruction of per-and polyfluoroalkyl substances in groundwater, aqueous film-forming foams, and investigation derived waste. Chem Eng J 425:131778

    Article  CAS  Google Scholar 

  • Karimian N, Stortini AM, Moretto LM, Costantino C, Bogialli S, Ugo PJA (2018) Electrochemosensor for trace analysis of perfluorooctanesulfonate in water based on a molecularly imprinted poly (o-phenylenediamine) polymer. ACS Sens 3:1291–1298

    Article  CAS  Google Scholar 

  • Kemi, S.C.A., 2015. Occurrence and use of highly fluorinated substances and alternatives. Swedish Chemicals Agency Stockholm, Sweden. https://www.kemi.se/download/18.6df1d3df171c243fb23a98ea/1591454109137/report-7-15-occurrence-and-use-of-highly-fluorinated-substances-and-alternatives.pdf.

  • Kim M, Guerra P, Theocharides M, Barclay K, Smyth SA, Alaee M (2013) Polybrominated diphenyl ethers in sewage sludge and treated biosolids: Effect factors and mass balance. Water Res 47(17):6496–6505. https://doi.org/10.1016/j.watres.2013.08.022

    Article  CAS  Google Scholar 

  • Kotthoff M, Müller J, Jürling H, Schlummer M, Fiedler D (2015) Perfluoroalkyl and polyfluoroalkyl substances in consumer products. Environ Sci Pollut Res 22(19):14546–14559

    Article  CAS  Google Scholar 

  • Krafft MP, Riess JG (2015) Selected physicochemical aspects of poly-and perfluoroalkylated substances relevant to performance, environment and sustainability Part one. Chemosphere 129:4–19. https://doi.org/10.1016/j.chemosphere.2014.08.039

    Article  CAS  Google Scholar 

  • Krippner J, Falk S, Brunn H, Georgii S, Schubert S, Stahl T (2015) Accumulation potentials of perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkyl sulfonic acids (PFSAs) in maize (Zea mays). J Agric Food Chem 63(14):3646–3653

    Article  CAS  Google Scholar 

  • Kucharzyk KH, Darlington R, Benotti M, Deeb R, Hawley E (2017) Novel treatment technologies for PFAS compounds: a critical review. J Environ Manage 204:757–764. https://doi.org/10.1016/j.jenvman.2017.08.016

    Article  CAS  Google Scholar 

  • Kwon BG, Lim HJ, Na SH, Choi BI, Shin DS, Chung SY (2014) Biodegradation of perfluorooctanesulfonate (PFOS) as an emerging contaminant. Chemosphere 109:221–225. https://doi.org/10.1016/j.chemosphere.2014.01.072

    Article  CAS  Google Scholar 

  • Lam JC, Lyu J, Kwok KY, Lam PK (2016) Perfluoroalkyl substances (PFASs) in marine mammals from the South China Sea and their temporal changes 2002–2014: concern for alternatives of PFOS? Environ Sci Technol 50(13):6728–6736. https://doi.org/10.1021/acs.est.5b06076

    Article  CAS  Google Scholar 

  • Lang JR, Allred BM, Field JA, Levis JW, Barlaz MA (2017) National estimate of per-and polyfluoroalkyl substance (PFAS) release to US municipal landfill leachate. Environ Sci Technol 51(4):2197–2205. https://doi.org/10.1021/acs.est.6b05005

    Article  CAS  Google Scholar 

  • Lechner M, Knapp H (2011) Carryover of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) from soil to plant and distribution to the different plant compartments studied in cultures of carrots (Daucus carota ssp. Sativus), potatoes (Solanum tuberosum), and cucumbers (Cucumis Sativus). J Agric Food Chem 59(20):11011–8. https://doi.org/10.1021/jf201355y

  • Lee Y-C, Wang P-Y, Lo S-L, Huang C (2017) Recovery of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) from dilute water solution by foam flotation. Sep Purif Technol 173:280–285

    Article  CAS  Google Scholar 

  • Letcher RJ, Chu S, Smyth S-A (2020) Side-chain fluorinated polymer surfactants in biosolids from wastewater treatment plants. J Hazard Mater 388:122044. https://doi.org/10.1016/j.jhazmat.2020.122044

  • Liang S, Lin H, Yan X, Huang Q (2018) Electro-oxidation of tetracycline by a Magnéli phase Ti4O7 porous anode: Kinetics products and toxicity. Chem Eng J 332:628–636. https://doi.org/10.1016/j.cej.2017.09.109

    Article  CAS  Google Scholar 

  • Li X, Chen S, Quan X, Zhang Y (2011) Enhanced adsorption of PFOA and PFOS on multi-walled carbon nanotubes under electrochemical assistance. Environ Sci Technol 45(19):8498–8505. https://doi.org/10.1021/es202026v

    Article  CAS  Google Scholar 

  • Li Z, Zhang P, Shao T, Wang J, Jin L, Li X (2013) Different nano-structured In2O3 for photocatalytic decomposition of perfluorooctanoic acid (PFOA). J Hazard Mater 260:40–46. https://doi.org/10.1016/j.jhazmat.2013.04.042

    Article  CAS  Google Scholar 

  • Li K, Zeng Z, Xiong J, Yan L, Guo H, Liu S, Dai Y, Chen T (2015) Fabrication of mesoporous Fe3O4@ SiO2@ CTAB–SiO2 magnetic microspheres with a core/shell structure and their efficient adsorption performance for the removal of trace PFOS from water. Colloids Surf, A 465:113–123. https://doi.org/10.1016/j.colsurfa.2014.10.044

    Article  CAS  Google Scholar 

  • Li M, Yu Z, Liu Q, Sun L, Huang W (2016) Photocatalytic decomposition of perfluorooctanoic acid by noble metallic nanoparticles modified TiO2. Chem Eng J 286:232–238. https://doi.org/10.1016/j.cej.2015.10.037

    Article  CAS  Google Scholar 

  • Li J, Li Q, Li LS, Xu L (2017) Removal of perfluorooctanoic acid from water with economical mesoporous melamine-formaldehyde resin microsphere. Chem Eng J 320:501–509

    Article  CAS  Google Scholar 

  • Lim TC, Wang B, Huang J, Deng S, Yu G (2011) Emission inventory for PFOS in China: review of past methodologies and suggestions. Scientific World Journal 11:1963–1980. https://doi.org/10.1100/2011/868156

    Article  CAS  Google Scholar 

  • Liu W, Yang B, Wu L, Zou W, Pan X, Zou T, Liu F, Xia L, Wang X, Zhang D (2015) Involvement of NRF2 in perfluorooctanoic acid-induced testicular damage in male mice. Biol Reprod 93(2):41

    Article  CAS  Google Scholar 

  • Liu L, Liu Y, Li C, Ji R, Tian X (2018) Improved sorption of perfluorooctanoic acid on carbon nanotubes hybridized by metal oxide nanoparticles. Environ Sci Pollut Res 25(16):15507–15517. https://doi.org/10.1007/s11356-018-1728-5

    Article  CAS  Google Scholar 

  • Liu Z, Lu Y, Song X, Jones K, Sweetman AJ, Johnson AC, Zhang M, Lu X, Su C (2019) Multiple crop bioaccumulation and human exposure of perfluoroalkyl substances around a mega fluorochemical industrial park, China: implication for planting optimization and food safety. Environ Int 127:671–684

    Article  CAS  Google Scholar 

  • Long Y, Wang Y, Ji G, Yan L, Hu F, Gu A (2013) Neurotoxicity of perfluorooctane sulfonate to hippocampal cells in adult mice. PLoS ONE 8(1):e54176

    Article  CAS  Google Scholar 

  • Lu X, Deng S, Wang B, Huang J, Wang Y, Yu G (2016) Adsorption behavior and mechanism of perfluorooctane sulfonate on nanosized inorganic oxides. J Colloid Interface Sci 474:199–205. https://doi.org/10.1016/j.jcis.2016.04.032

    Article  CAS  Google Scholar 

  • Luo Q, Lu J, Zhang H, Wang Z, Feng M, Chiang S-YD, Woodward D, Huang Q (2015) Laccase-Catalyzed Degradation of Perfluorooctanoic Acid. Environ Sci Technol Lett 2(7):198–203. https://doi.org/10.1021/acs.estlett.5b00119

    Article  CAS  Google Scholar 

  • Ma R, Shih K (2010) Perfluorochemicals in wastewater treatment plants and sediments in Hong Kong. Environ Pollut 158:1354–1362

    Article  CAS  Google Scholar 

  • Mayilswami S, Krishnan K, Megharaj M, Naidu R (2014) Chronic PFOS exposure alters the expression of neuronal developmentrelated human homologues in Eisenia fetida. Ecotoxicol Environ Saf 110:288–297. https://doi.org/10.1016/j.ecoenv.2014.09.017

  • Meng P, Deng S, Lu X, Du Z, Wang B, Huang J, Wang Y, Yu G, Xing B (2014) Role of air bubbles overlooked in the adsorption of perfluorooctanesulfonate on hydrophobic carbonaceous adsorbents. Environ Sci Technol 48(23):13785–13792. https://doi.org/10.1021/es504108u

    Article  CAS  Google Scholar 

  • Menger RF, Funk E, Henry CS, Borch T (2021) Sensors for detecting per-and polyfluoroalkyl substances (PFAS): a critical review of development challenges, current sensors, and commercialization obstacles. Chem Eng J 417:129133

    Article  CAS  Google Scholar 

  • Merino N, Qu Y, Deeb RA, Hawley EL, Hoffmann MR, Mahendra S (2016) Degradation and removal methods for perfluoroalkyl and polyfluoroalkyl substances in water. Environ Eng Sci 33(9):615–649. https://doi.org/10.1089/ees.2016.0233

    Article  CAS  Google Scholar 

  • Morbioli GG, Mazzu-Nascimento T, Stockton AM, Carrilho E (2017) Technical aspects and challenges of colorimetric detection with microfluidic paper-based analytical devices (μPADs)-A review. Anal Chim Acta 970:1–22

    Article  CAS  Google Scholar 

  • Navarro I, de la Torre A, Sanz P, Porcel MÁ, Pro J, Carbonell G, Martínez MÁ (2017) Uptake of perfluoroalkyl substances and halogenated flame retardants by crop plants grown in biosolids-amended soils. Environ Res 152:199–206. https://doi.org/10.1016/j.envres.2016.10.018

    Article  CAS  Google Scholar 

  • Navarro I, de la Torre A, Sanz P, Pro J, Carbonell G, Martínez MÁ (2016) Bioaccumulation of emerging organic compounds (perfluoroalkyl substances and halogenated flame retardants) by earthworm in biosolid amended soils. Environ Res 14:932–39. https://doi.org/10.1016/j.envres.2016.05.004

    Article  CAS  Google Scholar 

  • Nienhauser AB, Ersan MS, Lin Z, Perreault F, Westerhoff P. and Garcia-Segura S, 2022. Boron-doped diamond electrodes degrade short-and long-chain per-and polyfluorinated alkyl substances in real industrial wastewaters. Journal of Environmental Chemical Engineering, 107192.

  • Niu Z, Wang Y, Lin H, Jin F, Li Y, Niu J (2017) Electrochemically enhanced removal of perfluorinated compounds (PFCs) from aqueous solution by CNTs-graphene composite electrode. Chem Eng J 328:228–235. https://doi.org/10.1016/j.cej.2017.07.033

    Article  CAS  Google Scholar 

  • Ochoa-Herrera V, Sierra-Alvarez R (2008) Removal of perfluorinated surfactants by sorption onto granular activated carbon, zeolite and sludge. Chemosphere 72(10):1588–1593

    Article  CAS  Google Scholar 

  • OECD Organisation for Economic Co-operation and Development. 2011. OECD portal on perfluorinated chemicals. Available from: http://www.oecd.org/site/0,3407,en_21571361_44787844_11_1_1_1,00.html.

  • Ojo AF, Peng C, Ng JC (2021) Assessing the human health risks of per-and polyfluoroalkyl substances: a need for greater focus on their interactions as mixtures. J Hazard Mater 407:124863

    Article  CAS  Google Scholar 

  • Olatunde OC, Kuvarega AT, Onwudiwe DC (2020) Photo enhanced degradation of polyfluoroalkyl and perfluoroalkyl substances. Heliyon 6(12):e05614

    Article  Google Scholar 

  • Ololade IA, Zhou Q, Pan G (2016) Influence of oxic/anoxic condition on sorption behavior of PFOS in sediment. Chemosphere 150:798–803. https://doi.org/10.1016/j.chemosphere.2015.08.068

    Article  CAS  Google Scholar 

  • Olsen GW, Chang S-C, Noker PE, Gorman GS, Ehresman DJ, Lieder PH, Butenhoff JL (2009) A comparison of the pharmacokinetics of perfluorobutane sulfonate (PFBS) in rats, monkeys, and humans. Toxicology 256:65–74

    Article  CAS  Google Scholar 

  • Ong CB, Mohammad AW, Ng LY, Mahmoudi E, Azizkhani S, Hairom NHH (2017) Solar photocatalytic and surface enhancement of ZnO/rGO nanocomposite: degradation of perfluorooctanoic acid and dye. Process Saf Environ Prot 112:298–307. https://doi.org/10.1016/j.psep.2017.04.031

    Article  CAS  Google Scholar 

  • Oren Y, Tobias H, Soffer A (1983) Removal of bacteria from water by electro adsorption on porous carbon electrodes. J Electroanal Chem Interfacial Electrochem 156:347–351. https://doi.org/10.1016/S0022-0728(83)80685-8

    Article  Google Scholar 

  • Ozer T, McMahon C, Henry CS (2020) Advances in paper-based analytical devices. Annu Rev Anal Chem 13:85–109

    Article  Google Scholar 

  • Page D, Vanderzalm J, Kumar A, Cheng KY, Kaksonen AH, Simpson S (2019) Risks of perfluoroalkyl and polyfluoroalkyl substances (PFAS) for sustainable water recycling via aquifers. Water 11:1737. https://doi.org/10.3390/w11081737

    Article  CAS  Google Scholar 

  • Pan C-G, Liu Y-S, Ying G-G (2016) Perfluoroalkyl substances (PFASs) in wastewater treatment plants and drinking water treatment plants: removal efficiency and exposure risk. Water Res 106:562–570

    Article  CAS  Google Scholar 

  • Park M, Wu S, Lopez IJ, Chang JY, Karanfil T, Snyder SA (2020) Adsorption of perfluoroalkyl substances (PFAS) in groundwater by granular activated carbons: roles of hydrophobicity of PFAS and carbon characteristics. Water Res 170:115364

    Article  CAS  Google Scholar 

  • Paul AG, Jones KC, Sweetman AJ (2008) A first global production, emission, and environmental inventory for perfluorooctane sulfonate. Environ Sci Technol 43(2):386–392. https://doi.org/10.1021/es802216n

    Article  CAS  Google Scholar 

  • Phong Vo HN, Ngo HH, Guo W, Hong Nguyen TM, Li J, Liang H, Deng L, Chen Z, Hang Nguyen TA (2020) Poly-and perfluoroalkyl substances in water and wastewater: a comprehensive review from sources to remediation. J Water Process Engineering 36:101393

    Article  Google Scholar 

  • Pilli S, Bhunia P, Yan S, LeBlanc RJ, Tyagi RD, Surampalli RY (2011) Ultrasonic pretreatment of sludge: a review. Ultrason Sonochem 18(1):1–18

    Article  CAS  Google Scholar 

  • Place BJ, Field JA (2012) Identification of novel fluorochemicals in aqueous film-forming foams used by the US military. Environ Sci Technol 46(13):7120–7127

    Article  CAS  Google Scholar 

  • Presentato A, Lampis S, Vantini A, Manea F, Dapr àF, Zuccoli S et al (2020) On the ability of perfluorohexane sulfonate (PFHxS) bioaccumulation by two Pseudomonas sp strains isolated from PFAS-contaminated environmental matrices. Microorganisms 8:92

    Article  CAS  Google Scholar 

  • Qu Y, Zhang CJ, Chen P, Zhou Q, Zhang WX (2014) Effect of initial solution pH on photo-induced reductive decomposition of perfluorooctanoic acid. Chemosphere 107:218–223

    Article  CAS  Google Scholar 

  • Qu J-H, Lu CC, Xu C, Chen G, Qiu LL, Jiang JK, Ben S, Wang YB, Gu AH, Wang XR (2016) Perfluorooctane sulfonate-induced testicular toxicity and differential testicular expression of estrogen receptor in male mice. Environ Toxicol Pharmacol 45:150–157

    Article  CAS  Google Scholar 

  • Quinete N, Wu Q, Zhang T, Yun SH, Moreira I, Kannan K (2009) Specific profiles of perfluorinated compounds in surface and drinking waters and accumulation in mussels, fish, and dolphins from southeastern Brazil. Chemosphere 77:863–869

    Article  CAS  Google Scholar 

  • Rahman MF, Peldszus S, Anderson WB (2014) Behaviour and fate of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in drinking water treatment: a review. Water Res 50:318–340. https://doi.org/10.1016/j.watres.2013.10.045

    Article  CAS  Google Scholar 

  • Rankin K, Mabury SA, Jenkins TM, Washington JW (2016) A North American and global survey of perfluoroalkyl substances in surface soils: distribution patterns and mode of occurrence. Chemosphere 161:333–341

    Article  CAS  Google Scholar 

  • Rich CD, Blaine AC, Hundal L, Higgins CP (2015) Bioaccumulation of perfluoroalkyl acids by earthworms (Eisenia fetida) exposed to contaminated soils. Environ Sci Technol 49(2):881–8. https://doi.org/10.1021/es504152d

  • Rodriguez KL, Hwang JH, Esfahani AR, Sadmani AHM, Lee WH (2020) Recent developments of PFAS-detecting sensors and future direction: a review. Micromachines 11(7):667

    Article  Google Scholar 

  • Rodriguez-Freire L, Balachandran R, Sierra-Alvarez R, Keswani M (2015) Effect of sound frequency and initial concentration on the sonochemical degradation of perfluorooctane sulfonate (PFOS). J Hazard Mater 300:662–669. https://doi.org/10.1016/j.jhazmat.2015.07.077

    Article  CAS  Google Scholar 

  • Ross I, McDonough J, Miles J, Storch P, Thelakkat Kochunarayanan P, Kalve E, Hurst J, Dasgupta SS, Burdick J (2018) A review of emerging technologies for remediation of PFASs. Remediat J 28:101–126. https://doi.org/10.1002/rem.21553

    Article  Google Scholar 

  • Roth K, Yang Z, Agarwal M, Liu W, Peng Z, Long Z, Birbeck J, Westrick J, Liu W and Petriello MC, 2021. Exposure to a mixture of legacy, alternative, and replacement per-and polyfluoroalkyl substances (PFAS) results in sex-dependent modulation of cholesterol metabolism and liver injury. Environment International, 157, p.106843Agency, U.E.P., 2016. Third unregulated contaminant monitoring rule. https://www.epa.gov/dwucmr/third-unregulated-contaminant-monitoring-rule.

  • Ruan S, 2022. Life cycle assessment of different alternative materials used for stabilization/solidification. In Low Carbon Stabilization and Solidification of Hazardous Wastes (pp. 531–543). Elsevier.

  • Sahu A, Blackburn K, Durkin K, Eldred TB, Johnson BR, Sheikh R, Amburgey JE, Poler JC (2018) Green synthesis of nanoscale anion exchange resin for sustainable water purification. Environ Sci: Water Res Technol 4(10):1685–1694. https://doi.org/10.1039/C8EW00593A

    Article  CAS  Google Scholar 

  • Sahu SP, Qanbarzadeh M, Ateia M, Torkzadeh H, Maroli AS, Cates EL (2018) Rapid degradation and mineralization of perfluorooctanoic acid by a new petitjeanite Bi3O (OH)(PO4) 2 microparticle ultraviolet photocatalyst. Environ Sci Technol Lett 5(8):533–538. https://doi.org/10.1021/acs.estlett.8b00395

    Article  CAS  Google Scholar 

  • Saleh NB, Khalid A, Tian Y, Ayres C, Sabaraya IV, Pietari J, Hanigan D, Chowdhury I, Apul OG (2019) Removal of poly-and per-fluoroalkyl substances from aqueous systems by nano-enabled water treatment strategies. Environ Sci: Water Res Technol 5(2):198–208. https://doi.org/10.1039/C8EW00621K

    Article  CAS  Google Scholar 

  • Schaefer CE, Andaya C, Burant A, Condee CW, Urtiaga A, Strathmann TJ, Higgins CP (2017) Electrochemical treatment of perfluorooctanoic acid and perfluorooctane sulfonate: insights into mechanisms and application to groundwater treatment. Chem Eng J 317:424–432. https://doi.org/10.1016/j.cej.2017.02.107

    Article  CAS  Google Scholar 

  • Sebastiano M, Jouanneau W, Blévin P, Angelier F, Parenteau C, Gernigon J, Lemesle JC, Robin F, Pardon P, Budzinski H, Labadie P (2021) High levels of fluoroalkyl substances and potential disruption of thyroid hormones in three gull species from South Western France. Sci Total Environ 765:144611

    Article  CAS  Google Scholar 

  • Segets D, Lucas JM, Klupp Taylor RN, Scheele M, Zheng H, Alivisatos AP, Peukert W (2012) Determination of the quantum dot band gap dependence on particle size from optical absorbance and transmission electron microscopy measurements. ACS Nano 6(10):9021–9032. https://doi.org/10.1021/nn303130d

    Article  CAS  Google Scholar 

  • Semerád J, Hatasová N, Grasserová A, Černá T, Filipová A, Hanč A, Innemanová P, Pivokonský M, Cajthaml T (2020) Screening for 32 per- and polyfluoroalkyl substances (PFAS) including GenX in sludges from 43 WWTPs located in the Czech Republic - Evaluation of potential accumulation in vegetables after application of biosolids. Chemosphere 261:128018. https://doi.org/10.1016/j.chemosphere.2020.128018

  • Senevirathna STMLD, Tanaka S, Fujii S, Kunacheva C, Harada H, Shivakoti BR, Okamoto R (2010) A comparative study of adsorption of perfluorooctane sulfonate (PFOS) onto granular activated carbon, ion-exchange polymers and non-ion-exchange polymers. Chemosphere 80(6):647–651. https://doi.org/10.1016/j.chemosphere.2010.04.053

    Article  CAS  Google Scholar 

  • Shao T, Zhang P, Jin L, Li Z (2013) Photocatalytic decomposition of perfluorooctanoic acid in pure water and sewage water by nano-structured gallium oxide. Appl Catal B 142:654–661. https://doi.org/10.1016/j.apcatb.2013.05.074

    Article  CAS  Google Scholar 

  • Shaw DMJ, Munoz G, Bottos EM, Duy SV, Sauvé S, Liu J, Van Hamme JD (2019) Degradation and defluorination of 6:2 fluorotelomer sulfonamidoalkyl betaine and 6:2 fluorotelomer sulfonate by Gordonia sp. strain NB4-1Y under sulfur-limiting conditions. Sci Total Environ 647:690–698. https://doi.org/10.1016/j.scitotenv.2018.08.012

    Article  CAS  Google Scholar 

  • Shende T, Andaluri G, Suri R (2021) Power density modulated ultrasonic degradation of perfluoroalkyl substances with and without sparging Argon. Ultrason Sonochem 76:105639

    Article  CAS  Google Scholar 

  • Sima MW, Jaffé PR (2021) A critical review of modeling poly-and perfluoroalkyl substances (PFAS) in the soil-water environment. Sci Total Environ 757:143793

    Article  CAS  Google Scholar 

  • Singh RK, Fernando S, Baygi SF, Multari N, Thagard SM, Holsen TM (2019) Breakdown products from perfluorinated alkyl substances (PFAS) degradation in a plasma-based water treatment process. Environ Sci Technol 53(5):2731–2738

    Article  CAS  Google Scholar 

  • Sirés I, Brillas E, Oturan MA, Rodrigo MA, Panizza M (2014) Electrochemical advanced oxidation processes: today and tomorrow A review. Environ Sci Pollut Res 21(14):8336–8367. https://doi.org/10.1007/s11356-014-2783-1

    Article  CAS  Google Scholar 

  • Soloff AC, Wolf BJ, White ND, Muir D, Courtney S, Hardiman G, Bossart GD, Fair PA (2017) Environmental perfluorooctane sulfonate exposure drives T cell activation in bottlenose dolphins. J Appl Toxicol 37(9):1108–1116

    Article  CAS  Google Scholar 

  • Song C, Chen P, Wang C, Zhu L (2012) Photodegradation of perfluorooctanoic acid by synthesized TiO2–MWCNT composites under 365 nm UV irradiation. Chemosphere 86(8):853–859. https://doi.org/10.1016/j.chemosphere.2011.11.034

    Article  CAS  Google Scholar 

  • Song Z, Tang H, Wang N, Zhu L (2013) Reductive defluorination of perfluorooctanoic acid by hydrated electrons in a sulfite-mediated UV photochemical system. J Hazard Mater 262:332–338. https://doi.org/10.1016/j.jhazmat.2013.08.059

    Article  CAS  Google Scholar 

  • Song Z, Dong X, Wang N, Zhu L, Luo Z, Fang J, Xiong C (2017) Efficient photocatalytic defluorination of perfluorooctanoic acid over BiOCl nanosheets via a hole direct oxidation mechanism. Chem Eng J 317:925–934

    Article  CAS  Google Scholar 

  • Sörengård M, Kleja DB, Ahrens L (2019a) Stabilization and solidification remediation of soil contaminated with poly-and perfluoroalkyl substances (PFASs). J Hazard Mater 367:639–646

    Article  CAS  Google Scholar 

  • Sörengård M, Gago-Ferrero P, Kleja DB, Ahrens L (2021) Laboratory-scale and pilot-scale stabilization and solidification (S/S) remediation of soil contaminated with per-and polyfluoroalkyl substances (PFASs). J Hazard Mater 402:123453

    Article  CAS  Google Scholar 

  • Soriano Á, Gorri D, Urtiaga A (2017) Efficient treatment of perfluorooctanoic acid by nano-filtration followed by electrochemical degradation of the NF concentrate. Water Res 112:147–156. https://doi.org/10.1016/j.watres.2017.01.043

    Article  CAS  Google Scholar 

  • Sørmo E, Silvani L, Bjerkli N, Hagemann N, Zimmerman AR, Hale SE, Hansen CB, Hartnik T, Cornelissen G (2021) Stabilization of PFAS-contaminated soil with activated biochar. Sci Total Environ 763:144034

    Article  CAS  Google Scholar 

  • Steinle-Darling E, Reinhard M (2008) Nano-filtration for trace organic contaminant removal: structure, solution, and membrane fouling effects on the rejection of perfluorochemicals. Environ Sci Technol 42(14):5292–5297. https://doi.org/10.1021/es703207s

    Article  CAS  Google Scholar 

  • Stoiber T, Evans S, Naidenko OV (2020) Disposal of products and materials containing per-and polyfluoroalkyl substances (PFAS): a cyclical problem. Chemosphere 260:127659. https://doi.org/10.1016/j.chemosphere.2020.127659

    Article  CAS  Google Scholar 

  • Sun Z, Zhang C, Chen P, Zhou Q, Hoffmann MR (2017) Impact of humic acid on the photoreductive degradation of perfluorooctane sulfonate (PFOS) by UV/Iodide process. Water Res 127:50–58

    Article  CAS  Google Scholar 

  • Sun P, Nie X, Chen X, Yin L, Luo J, Sun L, Wan C, Jiang S (2018a) Nrf2 signaling elicits a neuroprotective role against PFOS-mediated oxidative damage and apoptosis. Neurochem Res 43(12):2446–2459

    Article  CAS  Google Scholar 

  • Sun Q, Zhao Ch, Frankcombe T.J, Liu H, Liu Y (2020) Heterogeneous photocatalytic decomposition of per- and poly-fluoroalkyl substances: A review. Crit Rev Environ Sci Technol 50(5):523–547. https://doi.org/10.1080/10643389.2019.1631988

  • Sun Z, Zhang C, Xing L, Zhou Q, Dong W and Hoffmann, MR 2018b. UV/nitrilotriacetic acid process as a novel strategy for efficient photoreductive degradation of perfluorooctanesulfonate. Environmental science & technology, 52(5), 2953–2962.[136]

  • Sunderland EM, Hu XC, Dassuncao C, Tokranov AK, Wagner CC, Allen JG (2019) A review of the pathways of human exposure to poly- and perfluoroalkyl substances (PFASs) and present understanding of health effects. J Expo Sci Environ Epidemiol 29(2):131–147. https://doi.org/10.1038/s41370-018-0094-1

    Article  CAS  Google Scholar 

  • Sungur Ş, Çevik B, Köroğlu M (2020) Determination of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) contents of compost amended soils and plants grown in these soils. Int J Environ Anal Chem 102(8):1926–1934. https://doi.org/10.1080/03067319.2020.1745200

    Article  CAS  Google Scholar 

  • Takagi S, Adachi F, Miyano K, Koizumi Y, Tanaka H, Mimura M, Watanabe I, Tanabe S, Kannan K (2008) Perfluorooctanesulfonate and perfluorooctanoate in raw and treated tap water from Osaka. Japan Chemosphere 72:1409–1412

    Article  CAS  Google Scholar 

  • Takemine S, Takata M, Yamamoto S, Watanabe N, Matsumura C, Fujii S, Kondo A (2013) Thermal behavior of perfluorooctanoic acid adsorbed on granular activated carbon. Bunseki Kagaku 62:107–113. https://doi.org/10.2116/bunsekikagaku.62.107

    Article  CAS  Google Scholar 

  • Tang H, Xiang Q, Lei M, Yan J, Zhu L, Zou J (2012) Efficient degradation of perfluorooctanoic acid by UV Fenton process. Chem Eng J. 184:156–162. https://doi.org/10.1016/j.cej.2012.01.020

    Article  CAS  Google Scholar 

  • Thi L-AP, Do H-T, Lee Y-C, Lo S-L (2013) Photochemical decomposition of perfluorooctanoic acids in aqueous carbonate solution with UV irradiation. Chem Eng J 221:258–263. https://doi.org/10.1016/j.cej.2013.01.084

    Article  CAS  Google Scholar 

  • Tian H, Gao J, Li H, Boyd SA, Gu C (2016) Complete defluorination of perfluorinated compounds by hydrated electrons generated from 3-indole-acetic-acid in organomodified montmorillonite. Sci Rep 6(1):1–9

    Article  CAS  Google Scholar 

  • Tian A, Wu Y, Mao K, 2017. Enhanced performance of surface-modified TiO2 nanotubes for the decomposition of perfluorooctanoic acid, AIP Conference Proceedings. AIP Publishing, 020029. https://doi.org/10.1063/1.4971911

  • Tseng, N.S.-l., 2012. Feasibility of biodegradation of polyfluoroalkyl and perfluoroalkyl substances, UCLA. https://escholarship.org/content/qt2x47296b/qt2x47296b.pdf?t=mongnb

  • Turner BD, Sloan SW, Currell GR (2019) Novel remediation of per-and polyfluoroalkyl substances (PFASs) from contaminated groundwater using Cannabis sativa L. (hemp) protein powder. Chemosphere 229:22–31

    Article  CAS  Google Scholar 

  • Ulhaq M, Carlsson G, Örn S, Norrgren L (2013) Comparison of developmental toxicity of seven perfluoroalkyl acids to zebrafish embryos. Environ Toxicol Pharmacol 36(2):423–426. https://doi.org/10.1016/j.etap.2013.05.004

  • USEPA, 2009. US Environmental Protection Agency. Long-chain perfluorinated chemicals (PFCs) action plan. [Available from: http://www.epa.gov/opptintr/existingchemicals/pubs/pfcs_action_plan1230_09.pdf.

  • Vecitis CD, Park H, Cheng J, Mader BT, Hoffmann MR (2009) Treatment technologies for aqueous perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA). Front Environ Sci Eng China 3(2):129–151. https://doi.org/10.1007/s11783-009-0022-7

    Article  CAS  Google Scholar 

  • Vecitis CD, Wang Y, Cheng J, Park H, Mader BT, Hoffmann MR (2010) Sonochemical degradation of perfluorooctanesulfonate in aqueous film-forming foams. Environ Sci Technol 44:432–438. https://doi.org/10.1021/es902444r

    Article  CAS  Google Scholar 

  • Vellanki BP, Batchelor B, Abdel-Wahab A (2013) Advanced reduction processes: a new class of treatment processes. Environ Eng Sci 30(5):264–271

    Article  CAS  Google Scholar 

  • Vieira VM, Hoffman K, Shin HM, Weinberg JM, Webster TF, Fletcher T (2013) Perfluorooctanoic acid exposure and cancer outcomes in a contaminated community: a geographic analysis. Environ Health Perspect 121(3):318–323

    Article  CAS  Google Scholar 

  • Vo HNP, Ngo HH, Guo W, Nguyen TMH, Li J, Liang H, Deng L, Chen Z, Nguyen TAH (2020) Poly-and perfluoroalkyl substances in water and wastewater: a comprehensive review from sources to remediation. Journal of Water Process Engineering 36:101393

    Article  Google Scholar 

  • Vu CT and Wu T 2020. Recent progress in adsorptive removal of per-and poly-fluoroalkyl substances (PFAS) from water/wastewater. Critical Reviews in Environmental Science and Technology, 1–40.

  • Vuong AM, Yolton K, Webster GM, Sjodin A, Calafat AM, Braun JM, Dietrich KN, Lanphear BP, Chen A (2016) Prenatal polybrominated diphenyl ether and perfluoroalkyl substance exposures and executive function in school-age children. Environ Res 147:556–564

    Article  CAS  Google Scholar 

  • Walker B, Rundquist S, 2017. Mapping a contamination crisis. Environmental Working Group. Available from: https://www.ewg.org/research/mapping-contamination-crisis.

  • Wang F, Shih K (2011) Adsorption of perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) on alumina: influence of solution pH and cations. Water Res 45(9):2925–2930. https://doi.org/10.1016/j.watres.2011.03.007

    Article  CAS  Google Scholar 

  • Wang F, Lu X, Shih KM, Wang P, Li X (2014) Removal of perfluoroalkyl sulfonates (PFAS) from aqueous solution using permanently confined micelle arrays (PCMAs). Sep Purif Technol 138:7–12. https://doi.org/10.1016/j.seppur.2014.09.037

    Article  CAS  Google Scholar 

  • Wang F, Lu X, Li XY, Shih K (2015) Effectiveness and mechanisms of defluorination of perfluorinated alkyl substances by calcium compounds during waste thermal treatment. Environ Sci Technol 49(9):5672–5680. https://doi.org/10.1021/es506234b

    Article  CAS  Google Scholar 

  • Wang Z, DeWitt JC, Higgins CP, Cousins IT (2017) A never-ending story of per-and poly-fluoroalkyl substances (PFASs)? ACS Publications. https://doi.org/10.1021/acs.est.6b04806

    Article  Google Scholar 

  • Wang W, Mi X, Zhou Z, Zhou S, Li C, Hu X, Qi D, Deng S (2019) Novel insights into the competitive adsorption behavior and mechanism of per-and polyfluoroalkyl substances on the anion-exchange resin. J Colloid Interface Sci 557:655–663

    Article  CAS  Google Scholar 

  • Watanabe N, Takata M, Takemine S, Yamamoto K (2018) Thermal mineralization behavior of PFOA, PFHxA, and PFOS during reactivation of granular activated carbon (GAC) in nitrogen atmosphere. Environ Sci Pollut Res 25(8):7200–7205

    Article  CAS  Google Scholar 

  • Wei Z, Xu T, Zhao D (2019) Treatment of per-and polyfluoroalkyl substances in landfill leachate: status, chemistry and prospects. Environ Sci Water Res Technol 5:1814–1835

    Article  CAS  Google Scholar 

  • Wen B, Li L, Zhang H, Ma Y, Shan X-Q, Zhang S (2014) Field study on the uptake and translocation of perfluoroalkyl acids (PFAAs) by wheat (Triticum aestivum L.) grown in biosolids-amended soils. Environ Pollut 184:547–554. https://doi.org/10.1016/j.envpol.2013.09.040

    Article  CAS  Google Scholar 

  • Whittlesey MK, Peris E (2014) Catalytic hydrodefluorination with late transition metal complexes. ACS Catal 4(9):3152–3159. https://doi.org/10.1021/cs500887p

    Article  CAS  Google Scholar 

  • Wielsøe M, Long M, Ghisari M, Bonefeld-Jørgensen EC (2015) Perfluoroalkylated substances (PFAS) affect oxidative stress biomarkers in vitro. Chemosphere 129:239–245

    Article  CAS  Google Scholar 

  • Winchell LJ, Ross JJ, Wells MJ, Fonoll X, Norton JW Jr, Bell KY (2021) Per-and polyfluoroalkyl substances thermal destruction at water resource recovery facilities: a state of the science review. Water Environ Res 93(6):826–843

    Article  CAS  Google Scholar 

  • Wirth JR, Peden-Adams MM, White ND, Bossart GD, Fair PA (2014) In vitro PFOS exposure on immune endpoints in bottlenose dolphins (Tursiops truncatus) and mice. J Appl Toxicol 34:658–666

    Article  CAS  Google Scholar 

  • Wood RJ, Sidnell T, Ross I, McDonough J, Lee J, Bussemaker MJ (2020). Ultrasonic degradation of perfluorooctane sulfonic acid (PFOS) correlated with sonochemical and sonoluminescence characterisation. Ultrasonics Sonochemistry, 105196.

  • Wu X, Liang M, Yang Z, Su M, Yang B (2017) Effect of acute exposure to PFOA on mouse liver cells in vivo and in vitro. Environ Sci Pollut Res 24(31):24201–24206

    Article  CAS  Google Scholar 

  • Xia C, Lim X, Yang H, Goodson BM, Liu J (2022) Degradation of per-and polyfluoroalkyl substances (PFAS) in wastewater effluents by photocatalysis for water reuse. J Water Process Eng 46:102556

    Article  Google Scholar 

  • Xiao X, Ulrich BA, Chen B, Higgins CP (2017) Sorption of poly-and perfluoroalkyl substances (PFASs) relevant to aqueous film-forming foam (AFFF)-impacted groundwater by biochars and activated carbon. Environ Sci Technol 51(11):6342–6351

    Article  CAS  Google Scholar 

  • Xiong X, Zhang Y, Wang L Tsang DC, 2022. Overview of hazardous waste treatment and stabilization/solidification technology. In Low Carbon Stabilization and Solidification of Hazardous Wastes (pp. 1–14). Elsevier.

  • Xu C, Qiu P, Chen H, Jiang F (2017) Platinum modified indium oxide nanorods with enhanced photocatalytic activity on degradation of perfluorooctanoic acid (PFOA). J Taiwan Inst Chem Eng 80:761–768

    Article  CAS  Google Scholar 

  • Xu Z, Yu Y, Liu H, Niu J (2017) Highly efficient and stable Zr-doped nanocrystalline PbO2 electrode for mineralization of perfluorooctanoic acid in a sequential treatment system. Sci Total Environ 579:1600–1607

    Article  CAS  Google Scholar 

  • Xu B, Zhou JL, Altaee A, Ahmed MB, Johir MAH, Ren J, Li X (2020) Improved photocatalysis of perfluorooctanoic acid in water and wastewater by Ga2O3/UV system assisted by peroxymonosulfate. Chemosphere 239:124722

    Article  CAS  Google Scholar 

  • Xue A, Yuan ZW, Sun Y, Cao AY, Zhao HZ (2015) Electro-oxidation of perfluorooctanoic acid by carbon nanotube sponge anode and the mechanism. Chemosphere 141:120–126

    Article  CAS  Google Scholar 

  • Yamamoto T, Noma Y, Sakai S-I, Shibata Y (2007) Photodegradation of perfluorooctane sulfonate by UV irradiation in water and alkaline 2-propanol. Environ Sci Technol 41(16):5660–5665. https://doi.org/10.1021/es0706504

    Article  CAS  Google Scholar 

  • Yan H, Cousins IT, Zhang C, Zhou Q (2015) Perfluoroalkyl acids in municipal landfill leachates from China: occurrence, fate during leachate treatment and potential impact on groundwater. Sci Total Environ 524–525:23–31

    Article  CAS  Google Scholar 

  • Yao Y, Volchek K, Brown CE, Robinson A, Obal T (2014) Comparative study on perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) adsorption by different adsorbents in water. Water Sci Technol 70(12):1983–1991. https://doi.org/10.2166/wst.2014.445

    Article  CAS  Google Scholar 

  • Yi L, Chai L, Xie Y, Peng Q, Peng Q (2016) Isolation, identification, and degradation performance of a PFOA-degrading strain. Genet Mol Res 15:235–246. https://doi.org/10.4238/gmr.15028043

    Article  CAS  Google Scholar 

  • Yong ZY, Kim KY, Oh JE (2021) The occurrence and distributions of per-and polyfluoroalkyl substances (PFAS) in groundwater after a PFAS leakage incident in 2018. Environ Pollut 268:115395

    Article  CAS  Google Scholar 

  • Yu Q, Zhang R, Deng S, Huang J, Yu G (2009) Sorption of perfluorooctane sulfonate and perfluorooctanoate on activated carbons and resin: kinetic and isotherm study. Water Res 43(4):1150–1158. https://doi.org/10.1016/j.watres.2008.12.001

    Article  CAS  Google Scholar 

  • Yu J, He C, Liu X, Wu J, Hu Y, Zhang Y (2014) Removal of perfluorinated compounds by membrane bioreactor with powdered activated carbon (PAC): adsorption onto sludge and PAC. Desalination 334(1):23–28. https://doi.org/10.1016/j.desal.2013.08.007

    Article  CAS  Google Scholar 

  • Yu X, Cabooter D, Dewil R (2019) Efficiency and mechanism of diclofenac degradation by sulfite/UV advanced reduction processes (ARPs). Sci Total Environ 688:65–74

    Article  CAS  Google Scholar 

  • Zafeiraki E, Costopoulou D, Vassiliadou I, Bakeas E, Leondiadis L (2014) Determination of perfluorinated compounds (PFCs) in various foodstuff packaging materials used in the Greek market. Chemosphere 94:169–176

    Article  CAS  Google Scholar 

  • Zareitalabad P, Siemens J, Hamer M, Amelung W (2013) Perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) in surface waters, sediments, soils, and wastewater–a review on concentrations and distribution coefficients. Chemosphere 91(6):725–732. https://doi.org/10.1016/j.chemosphere.2013.02.024

    Article  CAS  Google Scholar 

  • Zhang W, Liang Y (2020) Removal of eight perfluoroalkyl acids from aqueous solutions by aeration and duckweed. Sci Total Environ 724:138357

    Article  CAS  Google Scholar 

  • Zhang S, Shao T, Bekaroglu SSK, Karanfil T (2009) The impacts of aggregation and surface chemistry of carbon nanotubes on the adsorption of synthetic organic compounds. Environ Sci Technol 43(15):5719–5725. https://doi.org/10.1021/es900453e

    Article  CAS  Google Scholar 

  • Zhang X, Niu H, Pan Y, Shi Y, Cai Y (2010) Chitosan-coated octadecyl-functionalized magnetite nanoparticles: preparation and application in extraction of trace pollutants from environmental water samples. Anal Chem 82(6):2363–2371. https://doi.org/10.1021/ac902589t

    Article  CAS  Google Scholar 

  • Zhang C, Qu Y, Zhao X, Zhou Q (2015) Photoinduced reductive decomposition of perfluorooctanoic acid in water effect of temperature and ionic strength. CLEAN Soil Air Water 43(2):223–228

    Article  CAS  Google Scholar 

  • Zhang C, Tang J, Peng C, Jin M (2016) Degradation of perfluorinated compounds in wastewater treatment plant effluents by electrochemical oxidation with nano-ZnO coated electrodes. J Mol Liq 221:1145–1150. https://doi.org/10.1016/j.molliq.2016.06.093

    Article  CAS  Google Scholar 

  • Zhang D, Luo Q, Gao B, Chiang SYD, Woodward D, Huang Q (2016) Sorption of perfluorooctanoic acid, perfluorooctane sulfonate and perfluoroheptanoic acid on granular activated carbon. Chemosphere 144:2336–2342

    Article  CAS  Google Scholar 

  • Zhang H, Wen B, Wen W, Ma Y, Hu X, Wu Y, Luo L, Zhang S (2018) Determination of perfluoroalkyl acid isomers in biosolids biosolids-amended soils and plants using ultra high performance liquid chromatography tandem mass spectrometry. J Chromatogr B 1072:25–33. https://doi.org/10.1016/j.jchromb.2017.09.036

  • Zhang X, Lohmann R, Dassuncao C, Hu XC, Weber AK, Vecitis CD, Sunderland EM (2016) Source attribution of poly-and perfluoroalkyl substances (PFASs) in Rhode Island and the New York Metropolitan Area surface waters. Environ Sci Technol Lett 3(9):316–321. https://doi.org/10.1021/acs.estlett.6b00255

    Article  CAS  Google Scholar 

  • Zhang D, Zhang W, Liang Y (2019a) Distribution of eight perfluoroalkyl acids in plant-soil-water systems and their effect on the soil microbial community. Sci Total Environ 697:134146. https://doi.org/10.1016/j.scitotenv.2019.134146

  • Zhang W, Zhang D, Liang Y (2019b) Nanotechnology in remediation of water contaminated by poly-and perfluoroalkyl substances: a review. Environ Pollut 247:266–276

  • Zhang W, Zhang D, Zagorevski DV, Liang Y (2019c) Exposure of Juncus effusus to seven perfluoroalkyl acids: uptake, accumulation, and phytotoxicity. Chemosphere 233:300–308

  • Zhang Z, Sarkar D, Biswas JK, Datta R (2022) Biodegradation of per-and polyfluoroalkyl substances (PFAS): a review. Biores Technol 344:126223

    Article  CAS  Google Scholar 

  • Zhang W, Cao H, Mahadevan Subramanya S, Savage P, Liang Y. (2020). Destruction of perfluoroalkyl acids accumulated in Typha latifolia through hydrothermal liquefaction. ACS Sustainable Chemistry & Engineering. https://doi.org/10.1021/acssuschemeng.0c03249

  • Zhao C, Zhang J, He G, Wang T, Hou D, Luan Z (2013) Perfluorooctane sulfonate removal by nano-filtration membrane the role of calcium ions. Chem Eng J 233:224–232. https://doi.org/10.1016/j.cej.2013.08.027

    Article  CAS  Google Scholar 

  • Zhao H, Gao J, Zhao G, Fan J, Wang Y, Wang Y (2013) Fabrication of novel SnO2-Sb/carbon aerogel electrode for ultrasonic electrochemical oxidation of perfluorooctanoate with high catalytic efficiency. Appl Catal B 136:278–286. https://doi.org/10.1016/j.apcatb.2013.02.013

    Article  CAS  Google Scholar 

  • Zhao L, Zhang Y, Fang S, Zhu L, Liu Z (2014) Comparative sorption and desorption behaviors of PFHxS and PFOS on sequentially extracted humic substances. J Environ Sci 26(12):2517–2525. https://doi.org/10.1016/j.jes.2014.04.009

    Article  Google Scholar 

  • Zhao HZ, Wang L, Chang YY, Xu Y (2016) High-efficiency removal of perfluorooctanoic acid from water by covalently bound hybrid coagulants (CBHyC) bearing a hydrophobic quaternary ammonium group. Sep Purif Technol 158:9–15. https://doi.org/10.1016/j.seppur.2015.11.044

    Article  CAS  Google Scholar 

  • Zhao S, Fan Z, Sun L, Zhou T, Xing Y, Liu L (2017) Interaction effects on uptake and toxicity of perfluoroalkyl substances and cadmium in wheat (Triticum aestivum L.) and rapeseed (Brassica campestris L.) from co-contaminated soil. Ecotoxicol Environ Saf 137:194–201. https://doi.org/10.1016/j.ecoenv.2016.12.007

Download references

Acknowledgements

Italian Agency for Development Cooperation supported this study through the partnerships for knowledge (PFK) program. S. Rtimi thanks the support from the Global Institute for Water, Environment and Health and the access offered by the UOC.

Author information

Authors and Affiliations

Authors

Contributions

TGA and SP: writing first draft; MV and SR: writing—editing last version; SR and MV: supervision.

Corresponding author

Correspondence to Sami Rtimi.

Ethics declarations

Consent to publish

All authors are consent about this submission. Authors give their consent for the publication.

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Philippe Garrigues

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The Supplementary materials associated with this article does not belong to the Authors. This review paper does not have any supplementary materials.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ambaye, T.G., Vaccari, M., Prasad, S. et al. Recent progress and challenges on the removal of per- and poly-fluoroalkyl substances (PFAS) from contaminated soil and water. Environ Sci Pollut Res 29, 58405–58428 (2022). https://doi.org/10.1007/s11356-022-21513-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-21513-2

Keywords

Navigation