Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Acute and chronic toxicity of benzotriazoles to aquatic organisms

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Purpose

Resulting from their intensive use as corrosion inhibitors in aircraft deicing and anti-icing fluids (ADAF) and for silver protection in dishwasher detergents benzotriazoles (BTs) are widespread in European surface waters. The current study aimed on an ecotoxicological characterization of 1H-benzotriazole (1H-BT) and 5-methyl-1H-benzotriazole (5MBT).

Methods

Acute and chronic OECD guideline tests were conducted with primary producers (Desmodesmus subspicatus, Lemna minor) and two daphnia species (Daphnia magna, Daphnia galeata) to characterize the hazard of these chemicals. Additionally, the estrogenic activity of both BTs was analyzed in vitro using a recombinant yeast estrogen screen (YES).

Results

Both BTs revealed significant effects in acute and chronic experiments, but exhibited no estrogenic activity in the YES. The algal growth test displayed an inhibited cell number increase with effect concentration (EC) values of EC10 1.18 and 2.86 mg l-1 for 1H-BT and 5MBT, respectively. In the Lemna test, EC10 values were 3.94 mg l-1 (1H-BT) and 2.11 mg l-1 (5MBT). D. magna was also affected with EC50 (48 h) values of 107 mg l-1 for 1H-BT and 51.6 mg l-1 for 5MBT. D. galeata was more sensitive with an EC50 (48 h) of 14.7 mg 1H-BT l-1 and 8.13 mg 5MBT l-1. In the 21-day reproduction tests with D. magna, the EC10 for 5MBT was 5.93 mg l-1 while 1H-BT showed no adverse effects. D. galeata turned out to be more sensitive in the chronic study with EC10 values of 0.97 mg l-1 for 1H-BT and 0.40 mg l-1 for 5 MBT.

Conclusion

Because BTs are regularly found in the aquatic environment at lower μg l-1 concentrations reflecting their persistence and poor elimination during wastewater treatment processes, a preliminary risk assessment was conducted. There is little indication that BTs pose a risk for aquatic ecosystems at current exposure levels during most of the year. However, it cannot be excluded that in winter with a higher usage of ADAFs environmental concentrations may well exceed the level that is considered safe for aquatic organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Baird DJ, Barber I, Calow P (1990) Clonal variation in general response of Daphnia magna Straus to toxic stress: I. Chronic life-history effects. Funct Ecol 4:399–407. doi:10.2307/2389602

    Article  Google Scholar 

  • Blüm W, McArdell CS, Hoehn E, Schaubhut R (2005) Organische Spurenstoffe im Grundwasser des Limmattales—Ergebnisse der Untersuchungskampagne 2004. Zürich, Schweiz

    Google Scholar 

  • Breedveld GD, Roseth R, Sparrevik M, Hartnik T, Hem LJ (2003) Persistence of the de-icing additive benzotriazole at an abandoned airport. Water Air Soil Poll 3:91–101. doi:10.1023/A:1023961213839

    CAS  Google Scholar 

  • Cancilla DA, Holtkamp A, Matassa L, Fang X (1997) Isolation and characterization of Microtox®-active components from aircraft deicing/antiicing fluids. Environ Toxicol Chem 16:430–434. doi:10.1897/1551-5028(1997) 016<0430:IACOMA>2.3.CO;2

    Article  CAS  Google Scholar 

  • Cancilla DA, Baird JC, Geis SW, Corsi SR (2003a) Studies of the environmental fate and effect of aircraft deicing fluids: detection of 5-methyl-1H-benzotriazole in the fathead minnow (Pimephales promelas). Environ Toxicol Chem 22:134–140. doi:10.1897/1551-5028(2003) 022<0134:SOTEFA>2.0.CO;2

    CAS  Google Scholar 

  • Cancilla DA, Baird JC, Rosa R (2003b) Detection of aircraft deicing additives in groundwater and soil samples from Fairchild Air Force Base, a small to moderate user of deicing fluids. Bull Environ Contam Toxicol 70:868–875. doi:10.1007/s00128-003-0063-8

    Article  CAS  Google Scholar 

  • Castro S, Davis LC, Erickson LE (2001) Plant-enhanced remediation of glycol-based aircraft deicing fluids. Pract Period Haz Toxic Radioact Waste Manage 5:141–152. doi:10.1061/(ASCE)1090-025X(2001) 5:3(141)

    Article  CAS  Google Scholar 

  • Castro S, Davis LC, Erickson LE (2003) Phytotransformation of benzotriazoles. Int J Phytoremediat 5:245–265. doi:10.1080/16226510390255832

    Article  CAS  Google Scholar 

  • Castro S, Davis LC, Erickson LE (2004) Natural, cost-effective, and sustainable alternatives for treatment of aircraft deicing fluid waste. Environ Progr 24:26–33. doi:10.1002/ep. 10059

    Article  Google Scholar 

  • Cornell JS, Pillard DA, Hernandez MT (2000) Comparative measures of the toxicity of component chemicals in aircraft deicing fluid. Environ Toxicol Chem 19:1465–1472. doi:10.1002/etc.5620190601

    Article  CAS  Google Scholar 

  • Corsi SR, Geis SW, Loyo-Rosales JE, Rice CP (2006a) Aquatic toxicity of nine aircraft deicer and anti-icer formulations and relative toxicity of additive package ingredients alkylphenol ethoxylates and 4,5-methyl-1H-benzotriazoles. Environ Sci Technol 40:7409–7415. doi:10.1021/es0603608

    Article  CAS  Google Scholar 

  • Corsi SR, Geis SW, Loyo-Rosales JE, Rice CP, Sheesley R, Failey GG, Cancilla DA (2006b) Characterization of aircraft deicer and anti-icer components and toxicity in airport snowbanks and snowmelt runoff. Environ Sci Technol 40:3195–3202. doi:10.1021/es052028m

    Article  CAS  Google Scholar 

  • Corsi SR, Harwell GR, Geis SW, Bergmann D (2006c) Impacts of aircraft deicer and anti-icer runoff on receiving waters from Dallas/Fort Worth International Airport, Texas, USA. Environ Toxicol Chem 25:2890–2900. doi:10.1897/06-100R.1

    Article  CAS  Google Scholar 

  • Giger W, Schaffner C, Kohler HP (2006) Benzotriazole and tolytriazole as aquatic contaminants. 1. Input and occurrence in rivers and lakes. Environ Sci Technol 40:7186–7192. doi:10.1021/es061565j

    Article  CAS  Google Scholar 

  • Haeba MH, Hilscherová K, Mazurová E, Bláha L (2008) Selected endocrine disrupting compounds (vinclozolin, flutamide, ketoconazole and dicofol): effects on survival, occurrence of males, growth, molting and reproduction of Daphnia magna. Environ Sci Pollut Res 15:222–227. doi:10.1065/espr2007.12.466

    Article  CAS  Google Scholar 

  • Harris CA, Routledge EJ, Schaffner C, Brian JV, Giger W, Sumpter JP (2007) Benzotriazole is antiestrogenic in vitro but not in vivo. Environ Toxicol Chem 26:2367–2372. doi:10.1897/06-587R.1

    Article  CAS  Google Scholar 

  • Hartwell SI, Johrdahl DM, Evans JE, May EB (1995) Toxicity of aircraft deicer and anti-icer solutions to aquatic organisms. Environ Toxicol Chem 14:1375–1865. doi:10.1002/etc.5620140813

    Article  CAS  Google Scholar 

  • Janna H, Scrimshaw MD, Williams RJ, Churchley J, Sumpter JP (2011) From dishwasher to tap? Xenobiotic substance benzotriazole and tolytriazole in the environment. Environ Sci Technol 45:3858–3864. doi:10.1021/es103267g

    CAS  Google Scholar 

  • Kiss A, Fries E (2009) Occurrence of benzotriazoles in the rivers Main, Hengstbach and Hegbach (Germany). Environ Sci Pollut Res 16:702–710. doi:10.1007/s11356-009-0179-4

    Article  CAS  Google Scholar 

  • Klingensmith MJ (1961) The effect of certain benzazole compounds on plant growth and development. Am J Bot 48:40–45

    Article  CAS  Google Scholar 

  • Knepper TP (2003) Synthetic chelating agents and compounds exhibiting complexing properties in the aquatic environment. Trac-Trends Anal Chem 22:708–724. doi:10.1016/S0165-9936(03)01008-2

    Article  CAS  Google Scholar 

  • Koivisito S (1995) Is Daphnia magna an ecologically representative zooplankton species in toxicity tests? Environ Pollut 90:263–267. doi:10.1016/0269-7491(95)00029-Q

    Article  Google Scholar 

  • Koivisito S, Ketola M, Walls M (1992) Comparison of five cladoceran species in short- and long-term copper exposure. Hydrobiologia 248:125–136. doi:10.1007/BF00006080

    Article  Google Scholar 

  • Loos R, Gawlik BM, Locoro G, Rimaviciute E, Contini S, Bidoglio G (2009) EU-wide survey of polar organic persistent pollutants in European waters. Environ Pollut 157:561–568. doi:10.1016/j.envpol.2008.09.020

    Article  CAS  Google Scholar 

  • Novak LJ, Holtze K, Kent RA, Jefferson C, Anderson D (2000) Acute toxicity of storm water associated with deicing/anti-icing activities at Canadian airports. Environ Toxicol Chem 19:1846–1855. doi:10.1002/etc.5620190719

    Article  CAS  Google Scholar 

  • OECD (1998) Daphnia magna reproduction test (211). Guideline for testing of chemicals. Adopted: 21.09.1998

  • OECD (2002) Freshwater alga and cyanobacteria, growth inhibition test (201). Guideline for testing of chemicals. Adopted: July 2002

  • OECD (2004) Daphnia sp., acute immobilisation test (202). Guideline for testing of chemicals. Adopted: 13.04.2004

  • OECD (2006) Lemna sp., growth inhibition test (221). Guideline for testing of chemicals. Adopted: 23.03.2006

  • Ort C, Giger W, Schaffner C, Gujer W (2006) Modelling stochastic load variations in sewer systems. Water Sci Technol 52:113–122

    Google Scholar 

  • Pillard DA (1995) Comparative toxicity of formulated glycol deicers and pure ethylene and propylene glycol to Ceriodaphnia dubia and Pimephales promelas. Environ Toxicol Chem 14:311–315. doi:10.1897/1552-8618(1995) 14[311:CTOFGD]2.0.CO;2

    CAS  Google Scholar 

  • Pillard DA, DuFresne DL (1999) Toxicity of formulated glycol deicers and ethylene and propylene glycol to Lactuca sativa, Lolium perenne, Selenastrum capricornutum, and Lemna minor. Arch Environ Contam Toxicol 37:29–35. doi:10.1007/s002449900486

    Article  CAS  Google Scholar 

  • Pillard DA, Cornell JS, DuFresne DL, Hernandez MT (2001) Toxicity of benzotriazole and benzotriazole derivates to three aquatic species. Water Res 35:557–560. doi:10.1016/S0043-1354(00)00268-2

    Article  CAS  Google Scholar 

  • Reemtsma T, Weiss S, Mueller J, Petrovic M, Gonzáles S, Barcelo D, Ventura F, Knepper T (2006) Polar pollutants entry into the water cycle by municipal wastewater: a European perspective. Environ Sci Technol 40:5451–5458. doi:10.1021/es060908a

    Article  CAS  Google Scholar 

  • Routledge EJ, Sumpter JP (1996) Estrogenic activity of surfactants and some of their degradation products assessed using a recombinant yeast screen. Environ Toxicol Chem 15:241–248. doi:10.1897/1551-5028(1996) 015<0241:EAOSAS>2.3.CO;2

    Article  CAS  Google Scholar 

  • Schultis T, Metzger JW (2004) Determination of estrogenic activity by LYES-assay (yeast estrogen screen-assay assisted by enzymatic digestion with lyticase). Chemosphere 57:1649–1655. doi:10.1016/j.chemosphere.2004.06.027

    Article  CAS  Google Scholar 

  • Sieratowicz A, Kaiser D, Behr M, Oetken M, Oehlmann J (2011) Acute and chronic toxicity of four frequently used UV filter substances for Desmodesmus subspicatus and Daphnia magna. J Environ Sci Health Part A (in press)

  • US EPA (2000) Data collection and development on high production volume (HPV) chemicals. United States Environmental Protection Agency Federal Register, 65, 248. http://www.epa.gov/chemrtk/ts42213.pdf

  • Voutsa D, Hartmann P, Schaffner C, Giger W (2006) Benzotriazoles, alkyphenols, and bisphenol A in municipal wastewaters and in the Glatt River, Switzerland. Environ Sci Pollut Res 13:333–341. doi:10.1065/espr2006.01.295

    Article  CAS  Google Scholar 

  • Wagner M, Oehlmann J (2009) Endocrine disrupter in bottled mineral water: total estrogenic burden and migration from plastic bottles. Environ Sci Pollut Res 16:278–286. doi:10.1007/s11356-009-0107-7

    Article  CAS  Google Scholar 

  • Weiss S, Jakobs J, Reemtsma T (2006) Discharge of three benzotriazole corrosion inhibitors with municipal wastewater and improvements by membrane treatment and ozonation. Environ Sci Technol 40:7193–7199. doi:10.1021/es061434i

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The present study was supported by the research funding programme “LOEWE—Landes-Offensive zur Entwicklung Wissenschaftlich-ökonomischer Exzellenz” of Hesse’s Ministry of Higher Education, Research, and the Arts. The German Environment Foundation (DBU) is also acknowledged for financial support. We thank Prof. Dr. John P. Sumpter (Brunel University, UK) for providing the YES strain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Seeland.

Additional information

Responsible editor: Henner Hollert

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seeland, A., Oetken, M., Kiss, A. et al. Acute and chronic toxicity of benzotriazoles to aquatic organisms. Environ Sci Pollut Res 19, 1781–1790 (2012). https://doi.org/10.1007/s11356-011-0705-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-011-0705-z

Keywords

Navigation