Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Edge-cloud-enabled matrix factorization for diversified APIs recommendation in mashup creation

  • Published:
World Wide Web Aims and scope Submit manuscript

Abstract

A growing number of web APIs published on the Internet allows mashup developers to discover appropriate web APIs for polishing mashups. Developers often have to manually pick and choose several web APIs from extremely massive candidates, which is a laborious and cumbersome task. Fortunately, recommender system comes into existence. Some approaches perform recommendations in cloud platforms by utilizing historical records of Mashup-API interactions stored in edge nodes. However, many of these methods often pay more attention to recommendation accuracy while ignoring recommendation diversity, i.e., there are usually popular web APIs in recommendation list while most of the other novel web APIs are absent. The poor recommendation diversity may limit the usefulness of the recommendation results due to the lack of novelty. In order to implement an accurate and diversified web API recommendation, a novel MF-based recommendation approach named Div_PreAPI is put forward in this paper. Div_PreAPI integrates a weighting mechanism and neighborhood information into matrix factorization (MF) to implement diversified and personalized APIs recommendations. Finally, we conduct a series of experiments on a real-world dataset. Experimental results show the effectiveness of our proposal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aznag, M., Quafafou, M., Jarir, Z.: Leveraging formal concept analysis with topic correlation for service clustering and discovery. In: 2014 IEEE International Conference on Web Services, pp 153–160 (2014)

  2. Derr, E., Bugiel, S., Fahl, S., Acar, Y., Backes, M.: Keep me updated: An empirical study of third-party library updatability on android. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, pp 2187–2200 (2017)

  3. Ekstrand, M.D., Riedl, J.T., Konstan, J.A.: Collaborative filtering recommender systems. Found. Trends Hum.-Comput. Interact. 4(2), 81–173 (2011)

    Article  Google Scholar 

  4. Gao, W., Wu, J.: A novel framework for service set recommendation in mashup creation. In: 2017 IEEE International Conference on Web Services (ICWS), pp 65–72 (2017)

  5. Gu, Q., Cao, J., Peng, Q.: Service package recommendation for mashup creation via mashup textual description mining. In: 2016 IEEE International Conference on Web Services (ICWS), pp 452–459 (2016)

  6. Goarany, K., Kulczycki, G., Blake, M.B.: Mining social tags to predict mashup patterns. In: Proceedings of the 2nd International Workshop on Search and Mining User-Generated Contents, pp 71–78 (2010)

  7. Gemulla, R., Nijkamp, E., Haas, P.J., Sismanis, Y.: Large-scale matrix factorization with distributed stochastic gradient descent. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp 69–77 (2011)

  8. Hu, X., Peng, S., Guo, B., Xu, P.: Accurate am-fm signal demodulation and separation using nonparametric regularization method. Sig. Process. 186, 108131 (2021)

    Article  Google Scholar 

  9. Hu, X., Peng, S., Hwang, W.-L.: Emd revisited: A new understanding of the envelope and resolving the mode-mixing problem in am-fm signals. IEEE Trans. Sig. Process. 60(3), 1075–1086 (2012)

    Article  MathSciNet  Google Scholar 

  10. Huang, G., Ma, Y., Liu, X., Luo, Y., Lu, X., Blake, M.B.: Model-based automated navigation and composition of complex service mashups. IEEE Trans. Serv. Comput. 8(3), 494–506 (2015)

    Article  Google Scholar 

  11. Hu, Y., Koren, Y., Volinsky, C.: Collaborative filtering for implicit feedback datasets. In: 2008 Eighth IEEE International Conference on Data Mining, pp 263–272 (2008)

  12. Huang, Q., Zhou, Y., Tao, L., Yu, W., Zhang, Y., Huo, L., He, Z.: A chan-vese model based on the markov chain for unsupervised medical image segmentation. Tsinghua Sci. Technol. 26(6), 833–844 (2021)

    Article  Google Scholar 

  13. Jiang, E., Wang, L., Wang, J.: Decomposition-based multi-objective optimization for energy-aware distributed hybrid flow shop scheduling with multiprocessor tasks. Tsinghua Sci. Technol. 26(5), 646–663 (2021)

    Article  Google Scholar 

  14. Koren, Y.: Factorization meets the neighborhood: A multifaceted collaborative filtering model. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp 426–434 (2008)

  15. Khazbak, Y., Fan, J., Zhu, S., Cao, G.: Preserving personalized location privacy in ride-hailing service. Tsinghua Sci. Technol. 25(6), 743–757 (2020)

    Article  Google Scholar 

  16. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems. Computer 42(8), 30–37 (2009)

    Article  Google Scholar 

  17. Kumari, R., Kumar, S., Poonia, R.C., Singh, V., Raja, L., Bhatnagar, V., Agarwal, P.: Analysis and predictions of spread, recovery, and death caused by covid-19 in india. Big Data Mining Analytics 4(2), 65–75 (2021)

    Article  Google Scholar 

  18. Liang, Y., Lan, Y.: Tclbm: A task chain-based load balancing algorithm for microservices. Tsinghua Sci. Technol. 26(3), 251–258 (2021)

    Article  MathSciNet  Google Scholar 

  19. Liang, D., Altosaar, J., Charlin, L., Blei, D.M.: Factorization meets the item embedding: Regularizing matrix factorization with item co-occurrence. In: Proceedings of the 10th ACM Conference on Recommender Systems, pp 59–66 (2016)

  20. Li, C., Zhang, R., Huai, J., Sun, H.: A novel approach for api recommendation in mashup development. In: 2014 IEEE International Conference on Web Services, pp 289–296 (2014)

  21. Li, C., Zhang, R., Huai, J., Guo, X., Sun, H.: A probabilistic approach for web service discovery. In: 2013 IEEE International Conference on Services Computing, pp 49–56 (2013)

  22. Liu, J., Tang, M., Zheng, Z., Liu, X., Lyu, S.: Location-aware and personalized collaborative filtering for web service recommendation. IEEE Trans. Serv. Comput. 9(5), 686–699 (2016)

    Article  Google Scholar 

  23. Liang, D., Altosaar, J., Charlin, L., Blei, D.M.: Factorization meets the item embedding: Regularizing matrix factorization with item co-occurrence. In: Proceedings of the 10th ACM Conference on Recommender Systems, pp 59–66 (2016)

  24. Liu, Y., Pei, A., Wang, F., Yang, Y., Zhang, X., Wang, H., Dai, H., Qi, L., Ma, R.: An attention-based category-aware gru model for the next poi recommendation. Int. J. Intell. Syst. 36(7), 3174–3189 (2021)

    Article  Google Scholar 

  25. Meng, S., Dou, W., Zhang, X., Chen, J.: Kasr: A keyword-aware service recommendation method on mapreduce for big data applications. IEEE Trans. Parallel Distrib. Syst. 25(12), 3221–3231 (2014)

    Article  Google Scholar 

  26. Malek, Y. N., Najib, M., Bakhouya, M., Essaaidi, M.: Multivariate deep learning approach for electric vehicle speed forecasting. Big Data Mining Analytics 4(1), 56–64 (2021)

    Article  Google Scholar 

  27. Nitu, P., Coelho, J., Madiraju, P.: Improvising personalized travel recommendation system with recency effects. Big Data Mining Analytics 4(3), 139–154 (2021)

    Article  Google Scholar 

  28. Qi, L., He, Q., Chen, F., Zhang, X., Dou, W., Ni, Q.: Data-driven web apis recommendation for building web applications, IEEE Trans. Big Data. https://doi.org/10.1109/TBDATA.2020.2975587 (2020)

  29. Qi, L., Song, H., Zhang, X., Srivastava, G., Xu, X., Yu, S.: Compatibility-aware web api recommendation for mashup creation via textual description mining. ACM Trans. Multimed. Comput. Commun. Appl. 17, 1–19 (2021)

    Google Scholar 

  30. Rahman, M.M., Liu, X., Cao, B.: Web api recommendation for mashup development using matrix factorization on integrated content and network-based service clustering. In: 2017 IEEE International Conference on Services Computing (SCC), pp 225–232 (2017)

  31. Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: Bpr: Bayesian personalized ranking from implicit feedback. In: Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence, pp 452–461 (2009)

  32. Roy Chowdhury, S., Daniel, F., Casati, F.: Efficient, interactive recommendation of mashup composition knowledge. In: Service-Oriented Computing, pp 374–388 (2011)

  33. Tong, Z., Ye, F., Yan, M., Liu, H., Basodi, S.: A survey on algorithms for intelligent computing and smart city applications. Big Data Mining Analytics 4(3), 155–172 (2021)

    Article  Google Scholar 

  34. Tang, M., Zheng, Z., Kang, G., Liu, J., Yang, Y., Zhang, T.: Collaborative web service quality prediction via exploiting matrix factorization and network map. IEEE Trans. Netw. Serv. Manag. 13(1), 126–137 (2016)

    Article  Google Scholar 

  35. Wang, F., Zhu, H., Srivastava, G., Li, S., Khosravi, M.R., Qi, L.: Robust collaborative filtering recommendation with user-item-trust records. IEEE Trans. Comput. Social Syst, 1–11. https://doi.org/10.1109/TCSS.2021.3064213 (2021)

  36. Xu, W., Cao, J., Hu, L., Wang, J., Li, M.: A social-aware service recommendation approach for mashup creation. In: 2013 IEEE 20th International Conference on Web Services, pp 107–114 (2013)

  37. Yao, L., Wang, X., Sheng, Q. Z., Benatallah, B., Huang, C.: Mashup recommendation by regularizing matrix factorization with api co-invocations. IEEE Trans. Serv. Comput. 14(2), 502–515 (2021)

    Article  Google Scholar 

  38. Yu, R., Zhang, Y., Ye, Y., Wu, L., Wang, C., Liu, Q., Chen, E.: Multiple pairwise ranking with implicit feedback. In: Proceedings of the 27th ACM International Conference on Information and Knowledge Management, pp 1727–1730 (2018)

  39. Zhang, Y., Wang, K., He, Q., Chen, F., Deng, S., Zheng, Z., Yang, Y.: Covering-based web service quality prediction via neighborhood-aware matrix factorization, IEEE Trans. Serv. Comput. https://doi.org/10.1109/TSC.2019.2891517(2019)

  40. Zheng, Z., Ma, H., Lyu, M.R., King, I.: Qos-aware web service recommendation by collaborative filtering. IEEE Trans. Serv. Comput. 4(2), 140–152 (2011)

    Article  Google Scholar 

  41. Zhou, X., Liang, W., Wang, K.I.-K., Yang, L.T.: Deep correlation mining based on hierarchical hybrid networks for heterogeneous big data recommendations. IEEE Trans. Comput. Soc. Syst. 8(1), 171–178 (2021)

    Article  Google Scholar 

  42. Zheng, Z., Ma, H., Lyu, M. R., King, I.: Collaborative web service qos prediction via neighborhood integrated matrix factorization. IEEE Trans. Serv. Comput. 6(3), 289–299 (2013)

    Article  Google Scholar 

  43. Zhang, J., Liu, Q., Xu, K.: Flowrecommender: A workflow recommendation technique for process provenance. In: Proceedings of the Eighth Australasian Data Mining Conference, pp 55–61 (2009)

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 61872219) and the Natural Science Foundation of Shandong Province (ZR2019MF001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lianyong Qi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection: Special Issue on Resource Management at the Edge for Future Web, Mobile and IoT Applications

Guest Editors: Qiang He, Fang Dong, Chenshu Wu, and Yun Yang

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Wang, L., Li, G. et al. Edge-cloud-enabled matrix factorization for diversified APIs recommendation in mashup creation. World Wide Web 25, 1809–1829 (2022). https://doi.org/10.1007/s11280-021-00943-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11280-021-00943-x

Keywords

Navigation