Abstract
Automatic media tagging plays a critical role in modern tag-based media retrieval systems. Existing tagging schemes mostly perform tag assignment based on community contributed media resources, where the tags are provided by users interactively. However, such social resources usually contain dirty and incomplete tags, which severely limit the performance of these tagging methods. In this paper, we propose a novel automatic image tagging method aiming to automatically discover more complete tags associated with information importance for test images. Given an image dataset, all the near-duplicate clusters are discovered. For each near-duplicate cluster, all the tags occurring in the cluster form the cluster’s “document”. Given a test image, we firstly initialize the candidate tag set from its near-duplicate cluster’s document. The candidate tag set is then expanded by considering the implicit multi-tag associations mined from all the clusters’ documents, where each cluster’s document is regarded as a transaction. To further reduce noisy tags, a visual relevance score is also computed for each candidate tag to the test image based on a new tag model. Tags with very low scores can be removed from the final tag set. Extensive experiments conducted on a real-world web image dataset—NUS-WIDE, demonstrate the promising effectiveness of our approach.
Similar content being viewed by others
References
Agrawal, R., Imieliński, T. Swami, A.: Mining association rules between sets of items in large databases. SIGMOD Rec. 22(2), 207–216 (1993)
Ames, M., Naaman, M.: Why we tag: motivations for annotation in mobile and online media. In: SIGCHI, pp. 971–980 (2007)
Amir, A., Argillander, J., Campbell, M., Haubold, A., Iyengar, G., Ebadollahi, S., Kang, F., M. Naphade, R., Natsev, A., Smith, J.R., Tei, J., Volkmer, T.: Ibm research trecvid-2005 video retrieval system. In: TREC Video Retrieval Evaluation Proceedings (2006)
Bailloeul, T., Zhu, C., Xu, Y.: Automatic image tagging as a random walk with priors on the canonical correlation subspace. In: MIR ’08: Proceeding of the 1st ACM International Conference on Multimedia Information Retrieval, pp. 75–82. ACM, New York (2008)
Cao, L., Yu, J., Luo, J., Huang, T.S.: Enhancing semantic and geographic annotation of web images via logistic canonical correlation regression. In: MM ’09: Proceedings of the Seventeen ACM International Conference on Multimedia, pp. 125–134, ACM, New York (2009)
Chang, C.-C., Lin, C.-J.: LIBSVM: A Library for Support Vector Machines (2001)
Chua, T.-S., Tang, J., Hong, R., Li, H., Luo, Z., Zheng, Y.: Nus-wide: a real-world web image database from national university of Singapore. In: CIVR, pp. 1–9 (2009)
Guan, Z., Bu, J., Mei, Q., Chen, C., Wang, C.: Personalized tag recommendation using graph-based ranking on multi-type interrelated objects. In: SIGIR, pp. 540–547 (2009)
Han, Y.: Multi-label boosting for image annotation by structural grouping sparsity. In: ACM Multimedia (2010)
Heymann, P., Ramage, D., Garcia-Molina, H.: Social tag prediction. In: SIGIR, pp. 531–538 (2008)
Hua, X.-S., Qi, G.-J.: Online multi-label active annotation: towards large-scale content-based video search. In: ACM Multimedia, pp. 141–150 (2008)
Kennedy, L.S., Chang, S.-F., Kozintsev, I.V.: To search or to label?: predicting the performance of search-based automatic image classifiers. In: MIR, pp. 249–258 (2006)
Krestel, R., Fankhauser, P., Nejdl, W.: Latent dirichlet allocation for tag recommendation. In: RecSys, pp. 61–68 (2009)
Li, X., Snoek, C., Worring, M.: Learning social tag relevance by neighbor voting. IEEE Trans. Multimedia 11(7), 1310–1322 (2009)
Liu, D., Hua, X., Zhang, H.-J.: Image retagging. In: ACM Multimedia (2010)
Liu, D., Hua, X.-S., Yang, L., Wang, M., Zhang, H.-J.: Tag ranking. In: WWW, pp. 351–360 (2009)
Liu, X., Cheng, B., Yan, S., Tang, J., Chua, T.S., Jin, H., Label to region by bi-layer sparsity priors. In: MM ’09: Proceedings of the Seventeen ACM International Conference on Multimedia, pp. 115–124, ACM, New York (2009)
Liu, Y., Wu, F., Zhuang, Y., Xiao, J.: Active post-refined multimodality video semantic concept detection with tensor representation. In: ACM Multimedia, pp. 91–100 (2008)
Mei, T., Wang, Y., Hua, X.-S., Gong, S., Li, S.: Coherent Image Annotation by Learning Semantic Distance (2008)
Moxley, E., Mei, T., Manjunath, B.: Video annotation through search and graph reinforcement mining. IEEE Trans. Multimedia 12(3), 184–193 (2010)
Noh, T.-G., Park, S.-B., Yoon, H.-G., Lee, S.-J., Park, S.-Y.: An automatic translation of tags for multimedia contents using folksonomy networks. In: SIGIR, pp. 492–499 (2009)
Qi, G.J., Hua, X.S., Rui, Y., Tang, J., Mei, T., Zhang, H.J.: Correlative multi-label video annotation. In: ACM Multimedia, pp. 17–26. New York (2007)
Rui, X., Li, M., Li, Z., Ma, W.-Y., Yu, N.: Bipartite graph reinforcement model for web image annotation. In: ACM Multimedia, pp. 585–594 (2007)
Siersdorfer, S., San Pedro, J., Sanderson, M.: Automatic video tagging using content redundancy. In: SIGIR, pp. 395–402 (2009)
Sigurbjörnsson, B., van Zwol, R.: Flickr tag recommendation based on collective knowledge. In: WWW, pp. 327–336 (2008)
Sun, K., Bai, F.: Mining weighted association rules without preassigned weights. IEEE Trans. Knowl. Data Eng. 20(4), 489–495 (2008)
Tang, J., Hua, X.-S., Qi, G.-J., Song, Y., Wu, X.: Video annotation based on kernel linear neighborhood propagation. IEEE Trans Multimedia 10(4), 620–628 (2008)
Tang, J., Yan, S., Hong, R., Qi, G.-J., Chua, T.-S.: Inferring semantic concepts from community-contributed images and noisy tags. In: ACM Multimedia, pp. 223–232 (2009)
Wang, C., Jing, F., Zhang, L., Zhang, H.-J.: Image annotation refinement using random walk with restarts. In: ACM Multimedia, pp. 647–650 (2006)
Wang, C., Yan, S., Zhang, L., Zhang, H.-J., Multi-label sparse coding for automatic image annotation. In: Proceedings of IEEE Int. Conf. Computer Vision and Pattern Recognition, pp. 1643–1650. Florida, USA (2009)
Wang, F., Ding, C.H.Q., Li, T.: Integrated kl (k-means—laplacian) clustering: a new clustering approach by combining attribute data and pairwise relations. In: SDM, pp. 38–48 (2009)
Wang, N., Parthasarathy, S., Tan, K.-L., Tung, A.K.H.: Csv: visualizing and mining cohesive subgraphs. In: SIGMOD, pp. 445–458 (2008)
Wang, X.-J., Zhang, L., Li, X., Ma, W.-Y.: Annotating images by mining image search results. IEEE Trans. Pattern Anal. Mach. Intell. 30(11), 1919–1932 (2008)
Weinberger, K.Q., Slaney, M., Van Zwol, R.: Resolving tag ambiguity. In: ACM Multimedia, pp. 111–120 (2008)
Wu, L., Hoi, S.C., Jin, R., Zhu, J., Yu, N.: Distance metric learning from uncertain side information with application to automated photo tagging. In: MM ’09: Proceedings of the Seventeen ACM International Conference on Multimedia, pp. 135–144, ACM, New York (2009)
Wu, L., Yang, L., Yu, N., Hua, X.-S.: Learning to tag. In: WWW, pp. 361–370 (2009)
Xu, Z., Fu, Y., Mao, J., Su, D.: Towards the semantic web: collaborative tag suggestions. In: Collaborative Web Tagging Workshop. Edinburgh, Scotland (2006)
Yang, Y., Xu, D., Nie, F., Luo, J., Zhuang, Y.: Ranking with local regression and global alignment for cross media retrieval. In: ACM Multimedia (2009)
Yang, Y., Xu, D., Nie, F., Yan, S., Zhuang, Y.: Image clustering using local discriminant models and global IEEE Trans. Image Process. 19(10), 2761–2773 (2010)
Yang, Y., Zhuang, Y.-T., Wu, F., Pan, Y.-H., Harmonizing hierarchical manifolds for multimedia document semantics understanding and cross-media retrieval. IEEE Trans Multimedia 10(3), 437–446 (2008)
Yin, Z., Li, R., Mei, Q., Han, J.: Exploring social tagging graph for web object classification. In: KDD, pp. 957–966 (2009)
Yuan, X., Hua, X.-S., Wang, M., Wu, X.: Manifold-ranking based video concept detection on large database and feature pool. In: ACM Multimedia, pp. 623–626 (2006)
Zha, Z.-J., Yang, L., Mei, T., Wang, M., Wang, Z.: Visual query suggestion. In: MM ’09: Proceedings of the Seventeen ACM International Conference on Multimedia. ACM (2009)
Zhang, S., Huang, J., Huang, Y., Yu, Y., Li, H., Metaxas, D.N.: Automatic image annotation using group sparsity. In IEEE Conference on Computer Vision and Pattern Recognition, 2010. CVPR 2010 (2010)
Zhao, W., Ngo, C.-W.: Scale-rotation invariant pattern entropy for keypoint-based near-duplicate detection. IEEE Trans. Image Process. 18(2), 412–423 (2009)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Yang, Y., Huang, Z., Shen, H.T. et al. Mining multi-tag association for image tagging. World Wide Web 14, 133–156 (2011). https://doi.org/10.1007/s11280-010-0099-8
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11280-010-0099-8