Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A Comprehensive Survey of Aerial Mesh Networks (AMN): Characteristics, Application, Open Issues, Challenges, and Research Directions

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The integration of wireless devices has represented a significant leap forward in Information Technology, substantially enhancing human convenience. A notable subset of these networks is Aerial Mesh Networks (AMNs), akin to Mobile Ad-hoc networks (MANETs) and Vehicular Ad-hoc networks (VANETs), functioning wirelessly with mobility capabilities. AMNs have found increasing utility in remote and challenging environments, particularly in disaster scenarios where swift and effective action is imperative for saving lives. These networks boast traits such as easy deployment, self-configuration, and self-organization, seamlessly integrating with existing networks like cellular networks, WLANs, and WMANs. Despite the myriad benefits of AMNs, there remain unexplored avenues that necessitate further investigation to fully harness their potential. Researchers continue to strive towards optimizing AMNs for diverse application domains, ensuring maximal efficiency and accuracy. A succinct literature review of AMNs encompasses their varied characteristics, addressing issues such as routing, handover, node positioning, security, as well as network considerations like target coverage, robustness, fault tolerance, and load balancing. Additionally, it highlights key application areas including agriculture, civil applications, greenhouse gas monitoring, and disaster management. Finally, it elucidates pertinent open issues and future directions warranting exploration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  1. Wang, Q., Li, W., Yu, Z., Abbasi, Q., Imran, M., Ansari, S., & Zhu, T. (2023). An overview of emergency communication networks. Remote Sensing, 15(6), 1595.

    Article  Google Scholar 

  2. Akyildiz, I. F., Wang, X., & Wang, W. (2005). Wireless mesh networks: A survey. Computer Networks, 47(4), 445–487.

    Article  Google Scholar 

  3. Sahingoz, O. K. Mobile networking with UAVs: Opportunities and challenges. In 2013 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 933–941. IEEE, 2013.

  4. Yang, Y., Marios, M. P., & Ali, A. M. (2007). Multi-UAV cooperative search using an opportunistic learning method. Journal of Dynamic Systems, Measurement, and Control, 129(5), 716–728.

    Article  Google Scholar 

  5. Li, J., Yifeng Z., & Louise L. (2013). Communication architectures and protocols for networking unmanned aerial vehicles. In 2013 IEEE Globecom Workshops (GC Wkshps), pp. 1415–1420. IEEE.

  6. Polo, J., Hornero, G., Duijneveld, C., García, A., & Casas, O. (2015). Design of a low-cost wireless sensor network with UAV mobile node for agricultural applications. Computers and electronics in agriculture, 119, 19–32.

    Article  Google Scholar 

  7. Cambra, C., Díaz, J.R. & Lloret, J., (2014). Deployment and performance study of an Ad Hoc network protocol for intelligent video sensing in precision agriculture. In International Conference on Ad-Hoc Networks and Wireless (pp. 165–175). Springer, Berlin, Heidelberg.

  8. Faiçal, B. S., Costa, F. G., Pessin, G., Ueyama, J., Freitas, H., Colombo, A., Fini, P. H., Villas, L., Osório, F. S., Vargas, P. A., & Braun, T. (2014). The use of unmanned aerial vehicles and wireless sensor networks for spraying pesticides. Journal of Systems Architecture, 60(4), 393–404.

    Article  Google Scholar 

  9. Faiçal, B.S., Pessin, G., Geraldo Filho, P.R., Carvalho, A.C., Furquim, G. and Ueyama, J., 2014, November. Fine-tuning of UAV control rules for spraying pesticides on crop fields. In Tools with Artificial Intelligence (ICTAI), 2014 IEEE 26th International Conference on (pp. 527–533). IEEE.

  10. Faiçal, B. S., Freitas, H., Gomes, P. H., Mano, L. Y., Pessin, G., de Carvalho, A. C., Krishnamachari, B., & Ueyama, J. (2017). An adaptive approach for UAV-based pesticide spraying in dynamic environments. Computers and Electronics in Agriculture, 138, 210–223.

    Article  Google Scholar 

  11. Maddikunta, P. K. R., Hakak, S., Alazab, M., Bhattacharya, S., Gadekallu, T. R., Khan, W. Z., & Pham, Q. V. (2021). Unmanned aerial vehicles in smart agriculture: Applications, requirements, and challenges. IEEE Sensors Journal, 21(16), 17608–17619.

    Article  Google Scholar 

  12. Singh, P. K., & Sharma, A. (2022). An intelligent WSN-UAV-based IoT framework for precision agriculture application. Computers and Electrical Engineering, 100, 107912.

    Article  Google Scholar 

  13. Hayat, S., Yanmaz, E., & Muzaffar, R. (2016). Survey on unmanned aerial vehicle networks for civil applications: A communications viewpoint. IEEE Communications Surveys and Tutorials, 18(4), 2624–2661.

    Article  Google Scholar 

  14. “Autonomous multi-UAV systems,” 2013. [Online]. Available: http://uav.lakeside-labs.com/

  15. “CLOSE-SEARCH,” 2009. [Online]. Available: http://www.close-search-project.eu/

  16. “SHERPA,” 2013–2017. [Online]. Available: http://www.sherpa-project.eu/sherpa/

  17. Waharte, S., Trigoni, N. & Julier, S.J., (2009). Coordinated search with a swarm of UAVs. In Sensor, Mesh and Ad Hoc Communications and Networks Workshops (pp. 1–3).

  18. Goodrich, M. A., Morse, B. S., Gerhardt, D., Cooper, J. L., Quigley, M., Adams, J. A., & Humphrey, C. (2008). Supporting wilderness search and rescue using a camera-equipped mini UAV. Journal of Field Robotics, 25(1–2), 89–110.

    Article  Google Scholar 

  19. Ollero, A., & Merino, L. (2006). Unmanned aerial vehicles as tools for forest-fire fighting. Forest Ecology and Management, 234(1), S263.

    Article  Google Scholar 

  20. Freed, M., Fitzgerald, W. & Harris, R., 2005, April. Intelligent autonomous surveillance of many targets with few UAVs. In Proceedings of the Research and Development Partnering Conference, Department of Homeland Security, Boston, MA.

  21. Steffen, R. and Förstner, W., 2008, July. On visual real time mapping for unmanned aerial vehicles. In 21st Congress of the International Society for Photogrammetry and Remote Sensing (ISPRS) (pp. 57–62).

  22. Eisenbeiss, H. (2008). The autonomous mini helicopter: A powerful platform for mobile mapping. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 37, 977–983.

    Google Scholar 

  23. Asadpour, M., Giustiniano, D., Hummel, K.A., Heimlicher, S. and Egli, S., (2013). Now or later?: delaying data transfer in time-critical aerial communication. In Proceedings of the ninth ACM conference on Emerging networking experiments and technologies (pp. 127–132). ACM.

  24. Gupta, P., & Kumar, P. R. (2000). The capacity of wireless networks. IEEE Transactions on information theory, 46(2), 388–404.

    Article  MathSciNet  Google Scholar 

  25. Ribeiro, D., Santos, R., Cabral, R., Saramago, G., Montenegro, P., Carvalho, H., & Calçada, R. (2021). Non-contact structural displacement measurement using unmanned aerial vehicles and video-based systems. Mechanical Systems and Signal Processing, 160, 107869.

    Article  Google Scholar 

  26. Aldao, E., González-deSantos, L. M., Michinel, H., & González-Jorge, H. (2022). UAV obstacle avoidance algorithm to navigate in dynamic building environments. Drones, 6(1), 16.

    Article  Google Scholar 

  27. Watai, T., Machida, T., Ishizaki, N., & Inoue, G. (2006). A lightweight observation system for atmospheric carbon dioxide concentration using a small unmanned aerial vehicle. Journal of Atmospheric and Oceanic Technology, 23(5), 700–710.

    Article  Google Scholar 

  28. McGonigle, A. J. S., Aiuppa, A., Giudice, G., Tamburello, G., Hodson, A. J., & Gurrieri, S. (2008). Unmanned aerial vehicle measurements of volcanic carbon dioxide fluxes. Geophysical Research Letters. https://doi.org/10.1029/2007GL032508

    Article  Google Scholar 

  29. Astuti, G., Giudice, G., Longo, D., Melita, C.D., Muscato, G. & Orlando, A., 2008. An overview of the “Volcan Project”: An UAS for exploration of volcanic environments. In Unmanned Aircraft Systems (pp. 471–494). Springer, Dordrecht.

  30. Khan, A., Schaefer, D., Tao, L., Miller, D. J., Sun, K., Zondlo, M. A., Harrison, W. A., Roscoe, B., & Lary, D. J. (2012). Low power greenhouse gas sensors for unmanned aerial vehicles. Remote Sensing, 4(5), 1355–1368.

    Article  Google Scholar 

  31. Malaver, A., Motta, N., Corke, P., & Gonzalez, F. (2015). Development and integration of a solar powered unmanned aerial vehicle and a wireless sensor network to monitor greenhouse gases. Sensors, 15(2), 4072–4096.

    Article  Google Scholar 

  32. Alsamhi, S. H., Afghah, F., Sahal, R., Hawbani, A., Al-qaness, M. A., Lee, B., & Guizani, M. (2021). Green internet of things using UAVs in B5G networks: A review of applications and strategies. Ad Hoc Networks, 117, 102505.

    Article  Google Scholar 

  33. Asadzadeh, S., de Oliveira, W. J., & de Souza Filho, C. R. (2022). UAV-based remote sensing for the petroleum industry and environmental monitoring: State-of-the-art and perspectives. Journal of Petroleum Science and Engineering, 208, 109633.

    Article  Google Scholar 

  34. Erdelj, M. and Natalizio, E., 2016, February. UAV-assisted disaster management: Applications and open issues. In Computing, Networking and Communications (ICNC), 2016 International Conference on (pp. 1–5). IEEE.

  35. Ueyama, J., Freitas, H., Faiçal, B. S., Geraldo Filho, P. R., Fini, P., Pessin, G., Gomes, P. H., & Villas, L. A. (2014). Exploiting the use of unmanned aerial vehicles to provide resilience in wireless sensor networks. IEEE Communications Magazine, 52(12), 81–87.

    Article  Google Scholar 

  36. Bartoli, G., Fantacci, R., Gei, F., Marabissi, D., & Micciullo, L. (2015). A novel emergency management platform for smart public safety. International Journal of Communication Systems, 28(5), 928–943.

    Article  Google Scholar 

  37. Grocholsky, B., Keller, J., Kumar, R. V., & Pappas, G. J. (2006). Cooperative air and ground surveillance. IEEE Robotics & Automation Magazine. https://doi.org/10.1109/MRA.2006.1678135

    Article  Google Scholar 

  38. Wada, A., Yamashita, T., Maruyama, M., Arai, T., Adachi, H., & Tsuji, H. (2015). A surveillance system using small unmanned aerial vehicle (UAV) related technologies. NEC Technical Journal, 8(1), 68–72.

    Google Scholar 

  39. Carli, M., Panzieri, S., & Pascucci, F. (2014). A joint routing and localization algorithm for emergency scenario. Ad Hoc Networks, 13, 19–33.

    Article  Google Scholar 

  40. Marinho, M.A., De Freitas, E.P., da Costa, J.P.C.L., de Almeida, A.L.F. & de Sousa, R.T., (2013). Using cooperative MIMO techniques and UAV relay networks to support connectivity in sparse Wireless Sensor Networks. In Computing, Management and Telecommunications (ComManTel), 2013 International Conference on (pp. 49–54). IEEE.

  41. Fragkiadakis, A. G., Askoxylakis, I. G., Tragos, E. Z., & Verikoukis, C. V. (2011). Ubiquitous robust communications for emergency response using multi-operator heterogeneous networks. EURASIP Journal on Wireless Communications and Networking, 2011(1), 13.

    Article  Google Scholar 

  42. Abdallah, Asmaa, M. Zulfiker Ali, Jelena Mišić, & Vojislav B. Mišić. (2019). Efficient security scheme for disaster surveillance UAV communication networks. Information 10(2)

  43. Experiment design and analysis of a mobile aerial wireless mesh network for emergencies. 2015. [Online]. Available:

  44. Masroor, R., Naeem, M., & Ejaz, W. (2021). Efficient deployment of UAVs for disaster management: A multi-criterion optimization approach. Computer Communications, 177, 185–194.

    Article  Google Scholar 

  45. Joshi, A., Dhongdi, S., Dharmadhikari, M., Mehta, O., & Anupama, K. R. (2022). Enclosing and monitoring of disaster area boundary using multi-UAV network. Journal of Ambient Intelligence and Humanized Computing, 14(5), 6287–6305.

    Article  Google Scholar 

  46. Huang, S., Teo, R. S. H., Kwan, J. L. P., Liu, W., & Dymkou, S. M. (2018). Distributed UAV Loss Detection and Auto-replacement Protocol with Guaranteed Properties. Journal of Intelligent & Robotic Systems, 93, 1–14.

    Google Scholar 

  47. Bellur, B., Lewis, M., & Templin, F. (2002, May). An ad-hoc network for teams of autonomous vehicles. In Proceedings of the First Annual Symposium on Autonomous Intelligence Networks and Systems (pp. 1–6).

  48. Chen, Y., Feng, W., & Zheng, G. (2017). Optimum placement of UAV as relays. IEEE Communications Letters, 22(2), 248–251.

    Article  Google Scholar 

  49. Oubbati, O. S., Lakas, A., Zhou, F., Güneş, M., Lagraa, N., & Yagoubi, M. B. (2017). Intelligent UAV-assisted routing protocol for urban VANETs. Computer communications, 107, 93–111.

    Article  Google Scholar 

  50. Zheng, Y., Wang, Y., Li, Z., Dong, L., Jiang, Y. & Zhang, H., 2014. A mobility and load aware OLSR routing protocol for UAV mobile ad-hoc networks.

  51. Khare, V.R., Wang, F.Z., Wu, S., Deng, Y. & Thompson, C., 2008, September. Ad-hoc network of unmanned aerial vehicle swarms for search & destroy tasks. In Intelligent Systems, 2008. IS'08. 4th International IEEE Conference (Vol. 1, pp. 6–65). IEEE.

  52. Cui, J., Hu, B., & Chen, S. (2020). Resource allocation and location decision of a UAV-relay for reliable emergency indoor communication. Computer Communications, 159, 15–25.

    Article  Google Scholar 

  53. Forsmann, J.H., Hiromoto, R.E. & Svoboda, J., 2007, May. A time-slotted on-demand routing protocol for mobile ad hoc unmanned vehicle systems. In Unmanned Systems Technology IX (Vol. 6561, p. 65611P). International Society for Optics and Photonics.

  54. Zhao, Q. & Zhu, H., (2008). An optimized AODV protocol in mobile ad hoc network. In Wireless Communications, Networking and Mobile Computing, 2008. WiCOM'08. 4th International Conference on (pp. 1–4). IEEE.

  55. Liu, K., Zhang, J. & Zhang, T., (2008). The clustering algorithm of UAV networking in near-space. In Antennas, Propagation and EM Theory, 2008. ISAPE 2008. 8th International Symposium on (pp. 1550–1553). IEEE.

  56. Zang, C. and Zang, S., (2011). Mobility prediction clustering algorithm for UAV networking. In GLOBECOM Workshops (GC Wkshps), 2011 IEEE (pp. 1158–1161). IEEE.

  57. Alshamrani, M., Cruickshank, H., Sun, Z., Ansa, G., & Alshahwan, F. (2016). SIP signaling implementations and performance enhancement over MANET: A survey. International Journal of Advanced Computer Science and Applications, 7(5), 191–202.

    Article  Google Scholar 

  58. Hyland, M.T., Mullins, B.E., Baldwin, R.O. & Temple, M.A., (2007). Simulation-based performance evaluation of mobile ad hoc routing protocols in a swarm of unmanned aerial vehicles. In Advanced Information Networking and Applications Workshops, 2007, AINAW'07. 21st International Conference on (Vol. 2, pp. 249–256). IEEE.

  59. Sbeiti, M., Goddemeier, N., Behnke, D., & Wietfeld, C. (2015). Paser: Secure and efficient routing approach for airborne mesh networks. IEEE Transactions on Wireless Communications, 15(3), 1950–1964.

    Article  Google Scholar 

  60. Sliwa, B., Stefan F., & Christian W. (2019). Performance evaluation and optimization of BATMAN V routing for aerial and ground-based mobile ad-hoc networks. In 2019 IEEE 89th Vehicular Technology Conference (VTC2019-Spring), pp. 1–7. IEEE.

  61. Katila, C. J., Antonio Di, G., Chiara B., & Roberto V. (2017). Routing protocols for video surveillance drones in IEEE 802.11 s Wireless Mesh Networks. In 2017 European Conference on Networks and Communications (EuCNC), pp. 1–5. IEEE.

  62. Garg, S. An adaptive and low-complexity routing protocol for distributed airborne networks.

  63. Gupta, L., Jain, R., & Vaszkun, G. (2015). Survey of important issues in UAV communication networks. IEEE Communications Surveys & Tutorials, 18(2), 1123–1152.

    Article  Google Scholar 

  64. Yang, H., Bo H., & Lei W. (2017). A deep learning based handover mechanism for UAV networks. In 2017 20th International Symposium on Wireless Personal Multimedia Communications (WPMC), pp. 380–384. IEEE.

  65. Sharma, V., Song, F., You, I., & Chao, H.-C. (2017). Efficient management and fast handovers in software defined wireless networks using UAVs. IEEE Network, 31(6), 78–85.

    Article  Google Scholar 

  66. Gaur, A. S., Jyoti, B., Chung-Horng, L., & Alan R. (2017). IoT-equipped UAV communications with seamless vertical handover. In 2017 IEEE Conference on Dependable and Secure Computing, pp. 459–465. IEEE.

  67. Huang, W., Hongtao Z., & Mingyu Z. (2019). Analysis of handover probability based on equivalent model for 3D UAV networks." In 2019 IEEE 30th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), pp. 1–6. IEEE.

  68. Hu, Bo., Yang, H., Wang, L., & Chen, S. (2019). A trajectory prediction based intelligent handover control method in UAV cellular networks. China Communications, 16(1), 1–14.

    Google Scholar 

  69. Colpaert, A., Evgenii V., & Sofie P. (2020). 3D beamforming and handover analysis for UAV networks. arXiv preprint arXiv:2010.03413

  70. Khan, S.A., Shayea, I., Ergen, M., El-Saleh, A.A. & Roslee, M., (2021). An improved handover decision algorithm for 5g heterogeneous networks. In 2021 IEEE 15th Malaysia International Conference on Communication (MICC) (pp. 25–30). IEEE.

  71. Sedjelmaci, H., Sidi, M. S., & Nirwan, A. (2017). A hierarchical detection and response system to enhance security against lethal cyber-attacks in UAV networks. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 48(9), 1594–1606.

    Article  Google Scholar 

  72. Li, Z., Chen, M., Pan, C., Huang, N., Yang, Z., & Nallanathan, A. (2019). Joint trajectory and communication design for secure UAV networks. IEEE Communications Letters, 23(4), 636–639.

    Article  Google Scholar 

  73. García-Magariño, I., Lacuesta, R., Rajarajan, M., & Lloret, J. (2019). Security in networks of unmanned aerial vehicles for surveillance with an agent-based approach inspired by the principles of blockchain. Ad Hoc Networks, 86, 72–82.

    Article  Google Scholar 

  74. Teng, L., Ma, J., Feng, P., Meng, Y., Ma, X., Zhang, J., Chenyang, G., and Lu, D. (2019). Lightweight security authentication mechanism towards UAV networks. In 2019 International Conference on Networking and Network Applications (NaNA), pp. 379–384. IEEE.

  75. Asmaa, A., Zulfiker Ali, M., Mišić, J., & Mišić, V. B. (2019). Efficient security scheme for disaster surveillance UAV communication networks. Information, 10(2), 43.

    Article  Google Scholar 

  76. Liu, Y., Jian W., Houbing S., Jianqiang, L., & Jiawei, Y. (2019) Blockchain-based secure routing strategy for airborne mesh networks." In 2019 IEEE International Conference on Industrial Internet (ICII), pp. 56–61. IEEE.

  77. Garg, S., Gagangeet Singh, A., Neeraj, K., & Shalini, B. (2019). Tree-based attack–defense model for risk assessment in multi-UAV networks. IEEE Consumer Electronics Magazine, 8(6), 35–41.

    Article  Google Scholar 

  78. Zhao, N., Li, Y., Zhang, S., Chen, Y., Weidang, Lu., Wang, J., & Wang, X. (2020). Security enhancement for NOMA-UAV networks. IEEE Transactions on Vehicular Technology, 69(4), 3994–4005.

    Article  Google Scholar 

  79. Sharma, V., Sabatini, R., & Ramasamy, S. (2016). UAVs assisted delay optimization in heterogeneous wireless networks. IEEE Communications Letters, 20(12), 2526–2529.

    Article  Google Scholar 

  80. Caillouet, C., Tahiry, R. (2017). Efficient deployment of connected unmanned aerial vehicles for optimal target coverage. In 2017 Global Information Infrastructure and Networking Symposium (GIIS), pp. 1–8. IEEE.

  81. Reina, D. G., Hissam, T., & Toral, S. L. (2018). Multi-subpopulation evolutionary algorithms for coverage deployment of UAV-networks. Ad Hoc Networks, 68, 16–32.

    Article  Google Scholar 

  82. Akram, T., Awais, M., Naqvi, R., Ahmed, A., & Naeem, M. (2020). Multicriteria uav base stations placement for disaster management. IEEE Systems Journal, 14(3), 3475–3482.

    Article  Google Scholar 

  83. Gupta, M., & Varma, S. (2021). Optimal placement of UAVs of an aerial mesh network in an emergency situation. Journal of Ambient Intelligence and Humanized Computing, 12(1), 343–358.

    Article  Google Scholar 

  84. Gupta, M., & Shirshu, V. (2020) Optimal placement of UAVs forming aerial mesh networks to handle network issues. Adhoc & Sensor Wireless Networks 48

  85. Gupta, M., & Varma, S. (2021). Metaheuristic-based optimal 3D positioning of UAVs forming aerial mesh network to provide emergency communication services. IET Communications, 15(10), 1297–1314.

    Article  Google Scholar 

  86. Cui, J., Bo, Hu., & Chen, S. (2020). Resource allocation and location decision of a UAV-relay for reliable emergency indoor communication. Computer Communications, 159, 15–25.

    Article  Google Scholar 

  87. Hu, Y., Zhang, F., Tian, T., & Ma, D. (2020). Placement optimisation method for multi-UAV relay communication. IET Communications, 14(6), 1005–1015.

    Article  Google Scholar 

  88. Clausen, T., Philippe J., Cédric A., Anis L., Pascale M., Paul M., Amir Q., & Laurent V. (2003). Optimized link state routing protocol (OLSR).

  89. Neumann, A., Aichele, C., Lindner, M., & Wunderlich, S. (2008) Better approach to mobile ad-hoc networking (BATMAN). IETF draft 1–24.

  90. Zimmerling, M., Mottola, L., & Santini, S. (2020). Synchronous transmissions in low-power wireless: A survey of communication protocols and network services. ACM Computing Surveys (CSUR), 53(6), 1–39.

    Article  Google Scholar 

  91. Schuß, M., Boano, C. A., Weber, M., & Römer, K. (2017). A competition to push the dependability of low-power wireless protocols to the edge. In EWSN (pp. 54–65).

  92. Baddeley, M., Boano, C. A., Escobar-Molero, A., Liu, Y., Ma, X., Raza, U. & Stanoev, A. (2020). The impact of the physical layer on the performance of concurrent transmissions. In 2020 IEEE 28th International Conference on Network Protocols (ICNP) (pp. 1–12). IEEE.

  93. Zhou, L., Zhi, Y., Shidong, Z., & Wei, Z. (2018). Coverage probability analysis of UAV cellular networks in urban environments." In 2018 IEEE International Conference on Communications Workshops (ICC Workshops), pp. 1–6. IEEE.

  94. Sabino, S., & António, G. (2018). Topology control of unmanned aerial vehicle (uav) mesh networks: A multi-objective evolutionary algorithm approach. In Proceedings of the 4th ACM Workshop on Micro Aerial Vehicle Networks, Systems, and Applications, pp. 45–50.

  95. Mulligan, R., & Ammari, H. M. (2010). Coverage in wireless sensor networks: A survey. Netw. Protoc. Algorithms, 2(2), 27–53.

    Google Scholar 

  96. Bentz, W., Hoang, T., Bayasgalan, E., & Panagou, D. (2018). Complete 3-D dynamic coverage in energy-constrained multi-UAV sensor networks. Autonomous Robots, 42(4), 825–851.

    Article  Google Scholar 

  97. Jain, K., & Singh, A. (2022). A two vector data-prediction model for energy-efficient data aggregation in wireless sensor network. Concurrency and Computation: Practice and Experience, e6840.

  98. Jain, K., & Kumar, A. (2020). An energy-efficient prediction model for data aggregation in sensor network. Journal of Ambient Intelligence and Humanized Computing, 11(11), 5205–5216.

    Article  Google Scholar 

  99. Mozaffari, M., Saad, W., Bennis, M., & Debbah, M. (2016). Efficient deployment of multiple unmanned aerial vehicles for optimal wireless coverage. IEEE Communications Letters, 20(8), 1647–1650.

    Article  Google Scholar 

  100. Zorbas, D., Di Puglia, L., Pugliese, T. R., & Guerriero, F. (2016). Optimal drone placement and cost-efficient target coverage. Journal of Network and Computer Applications, 75, 16–31.

    Article  Google Scholar 

  101. Alzenad, M., El-Keyi, A., & Yanikomeroglu, H. (2017). 3-D placement of an unmanned aerial vehicle base station for maximum coverage of users with different QoS requirements. IEEE Wireless Communications Letters, 7(1), 38–41.

    Article  Google Scholar 

  102. Jain K., Gupta M., & Abraham A. (2022). Data prediction model in wireless sensor networks: a machine learning approach. In Lecture Notes in Networks and Systems, vol 419. Springer, Cham.

  103. Agarwal, A., Jain, K., & Dev, A. (2021). Modeling and analysis of data prediction technique based on linear regression model (DP-LRM) for cluster-based sensor networks. International Journal of Ambient Computing and Intelligence (IJACI), 12(4), 98–117.

    Article  Google Scholar 

  104. Vija, F. A. R., Cregut, S., Papadopoulos, G. Z., & Montavont, N. (2021). Enabling robust wireless communication for BMS on electric vehicles. In 2021 IEEE 46th Conference on Local Computer Networks (LCN) (pp. 423–426). IEEE.

  105. Shoufan, A. (2017). Continuous authentication of uav flight command data using behaviometrics. In 2017 IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-SoC) (pp. 1–6). IEEE.

  106. Yahuza, M., Idris, M. Y. I., Wahab, A. W. A., Nandy, T., Ahmedy, I. B., & Ramli, R. (2021). An edge assisted secure lightweight authentication technique for safe communication on the internet of drones network. IEEE Access, 9, 31420–31440.

    Article  Google Scholar 

  107. Chen, R., Li, C., Yan, S., Malaney, R., & Yuan, J. (2019). Physical layer security for ultra-reliable and low-latency communications. IEEE Wireless Communications, 26(5), 6–11.

    Article  Google Scholar 

  108. Yu, J., Hu, A., Zhou, F., Xing, Y., Yu, Y., Li, G., & Peng, L. (2019). Radio frequency fingerprint identification based on denoising autoencoders. In 2019 International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob) (pp. 1–6). IEEE.

  109. Wang, X., Hao, P., & Hanzo, L. (2016). Physical-layer authentication for wireless security enhancement: Current challenges and future developments. IEEE Communications Magazine, 54(6), 152–158.

    Article  Google Scholar 

  110. Singh, A., & Jain, K. (2022). An automated lightweight key establishment method for secure communication in WSN. Wireless Personal Communications, 1–21.

  111. Singh, A., & Jain, K. (2021). An efficient secure key establishment method in cluster-based sensor network. Telecommunication Systems, 1–14.

  112. Jain, K., & Kumar, A. (2021). A lightweight data transmission reduction method based on a dual prediction technique for sensor networks. Transactions on Emerging Telecommunications Technologies, e4345.

  113. Jain, K., & Kumar, A. (2019). An optimal RSSI-based cluster-head selection for sensor networks. International Journal of Adaptive and Innovative Systems, 2(4), 349–361.

    Article  Google Scholar 

  114. Fan, L., Yang, N., Duong, T. Q., Elkashlan, M., & Karagiannidis, G. K. (2016). Exploiting direct links for physical layer security in multiuser multirelay networks. IEEE Transactions on Wireless Communications, 15(6), 3856–3867.

    Article  Google Scholar 

  115. Gao, G. X., Sgammini, M., Lu, M., & Kubo, N. (2016). Protecting GNSS receivers from jamming and interference. Proceedings of the IEEE, 104(6), 1327–1338.

    Article  Google Scholar 

  116. Jain, K., & Bhola, A. (2019). An optimal cluster-head selection algorithm for wireless sensor networks. WSEAS Transactions on Communications, ISSN/E-ISSN, 1109–2742.

  117. Großiwindhager, B., Stocker, M., Rath, M., Boano, C. A., & Römer, K. (2019, April). SnapLoc: An ultra-fast UWB-based indoor localization system for an unlimited number of tags. In 2019 18th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN) (pp. 61–72). IEEE

  118. Liu, Y., Dai, H. N., Wang, Q., Shukla, M. K., & Imran, M. (2020). Unmanned aerial vehicle for internet of everything: Opportunities and challenges. Computer communications, 155, 66–83.

    Article  Google Scholar 

  119. Alam, M. M., Arafat, M. Y., Moh, S., & Shen, J. (2022). Topology control algorithms in multi-unmanned aerial vehicle networks: An extensive survey. Journal of Network and Computer Applications, 207, 103495.

    Article  Google Scholar 

  120. Khan, A., Gupta, S., & Gupta, S. K. (2022). Emerging UAV technology for disaster detection, mitigation, response, and preparedness. Journal of Field Robotics, 39(6), 905–955.

    Article  Google Scholar 

  121. Wong, A. W. L., Goh, S. L., Hasan, M. K., & Fattah, S. (2024). Multi-hop and mesh for LoRa networks: Recent advancements, issues, and recommended applications. ACM Computing Surveys, 56(6), 1–43.

    Article  Google Scholar 

  122. Elmokadem, T., & Savkin, A. V. (2021). Towards fully autonomous UAVs: A survey. Sensors, 21(18), 6223.

    Article  Google Scholar 

  123. Sharma, A., Vanjani, P., Paliwal, N., Basnayaka, C. M. W., Jayakody, D. N. K., Wang, H. C., & Muthuchidambaranathan, P. (2020). Communication and networking technologies for UAVs: A survey. Journal of Network and Computer Applications, 168, 102739.

    Article  Google Scholar 

  124. Aminifar, F., & Rahmatian, F. (2020). Unmanned aerial vehicles in modern power systems: Technologies, use cases, outlooks, and challenges. IEEE Electrification Magazine, 8(4), 107–116.

    Article  Google Scholar 

  125. Jain, K., Kumar, A., & Singh, A. (2023). Data transmission reduction techniques for improving network lifetime in wireless sensor networks: An up-to-date survey from 2017 to 2022. Transactions on Emerging Telecommunications Technologies, 34(1), e4674.

    Article  Google Scholar 

  126. Matracia, M., Saeed, N., Kishk, M. A., & Alouini, M. S. (2022). Post-disaster communications: Enabling technologies, architectures, and open challenges. IEEE Open Journal of the Communications Society, 3, 1177–1205.

    Article  Google Scholar 

Download references

Funding

This research received no specific grant from any funding agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khushboo Jain.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

This chapter does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this appendix, we enlist all the acronyms used in this paper with their connotations.

AMN

Aerial Mesh Networks

AODV

Ad hoc On-Demand Distance Vector

BLE

Bluetooth Low Energy

CM

Centimeter

DTN

Delay Tolerant Networks

DEQPSO

Differential Evolution with Quantum-behaved Particle Swarm Optimization

DOLSR

Directional OLSR

DSR

Dynamic Source Routing

IMU

Inertial Measuring Unit

EPO

Emperor Penguin Optimization

FANET

Flying Ad hoc Networks

GNSS

Global Navigation Satellite System

GPSR

Greedy Perimeter Stateless Routing

HRC

Hybrid Routing based on Clustering

INSARAG

International Search and Rescue Advisory Group

LCAD

Load Carry and Deliver

MANETs

Mobile Ad-hoc Networks

ML-OLSR

Mobility and Load Aware OLSR

MPCA

Mobility Prediction Clustering Algorithm

NIC

Network Interface Cards

NDIR

Non-Dispersive Infrared

O-HWMP

Optimized Hybrid Wireless Mesh Protocol

PSO

Particle Swarm Optimization

POLSR

Predictive OLSR

RTORA

Rapid Re-establishment Temporally Ordered Routing Algorithm

RGR

Reactive Greedy Reactive

RSSI

Received Signal Strength Indicator

SAR

Search and Rescue

SF

Synchronous Flooding

TBRPF

Topology Broadcast Based on Reverse-Path Forwarding

UAVR

UAV-Assisted VANETS Routing

UWB

Ultra-Wideband

UAVs

Unmanned Aerial Vehicles

UGVs

Unmanned Ground Vehicles

VANETs

Vehicular Ad-hoc networks

WWO

Water Wave Optimization

Wi-Fi

Wireless Fidelity

WLANs

Wireless Local Area Networks

WMNs

Wireless Mesh Networks

WMANs

Wireless Metropolitan Area Networks

WSANs

Wireless Sensor and Actuator Networks

WPANs

Wireless Personal Area Networks

WSN

Wireless Sensor Networks

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, M., Jain, K. A Comprehensive Survey of Aerial Mesh Networks (AMN): Characteristics, Application, Open Issues, Challenges, and Research Directions. Wireless Pers Commun 138, 333–368 (2024). https://doi.org/10.1007/s11277-024-11503-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-024-11503-7

Keywords

Navigation