Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Augmentation in Performance of Real-Time Balancing and Position Tracking Control for 2-DOF Ball Balancer System Using Intelligent Controllers

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This article presents the implementation of different compensators like PD, PID, PID with Integral ANTI-WINDUP, Neuro-fuzzy controller (Ni-F) and Neuro-fuzzy with PID (NiF-PID) controller with different inputs over the 2-DOF ball balancer system. The modeling of different controllers is done using MATLAB/Simulink. Along with simulation, the designed controllers are applied to an experimental setup of a real-time Quanser ball balancer system. Both transient and steady-state response analyses are done to evaluate the performance of these compensators. The comparisons for variation in ball position, applied input voltage to servo motor and plate angle are done for the proposed controllers for both simulation and real-time experimentation results. Position and plate angle control with load variation are also executed in real time with NiF-PID compensator. The assessment of simulation outcomes and real-time experimental response implies that the NiF-PID controller provides overall better control performances, the best adaptability and relevancy among all designed controllers for the ball balancer system. NiF-PID compensator provides 18.55% better result in case of steady-state error and 10 times less overshoot in case of real-time experimentation as compared to the PID controller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the current study available from the corresponding author on reasonable request.

References

  1. Jenhani, S., Gritli, H., Carbone, G. (2022). LMI-based optimization for the position feedback control of underactuated robotic systems via an affine PD controller: Case of the Pendubot. Proceedings of the International Conference on Data Analytics for Business and Industry (ICDABI). 729–735.

  2. Rsetam, K., Cao, Z., Wang, L., Al-Rawi, M., & Man, Z. (2022). Practically robust fixed-time convergent sliding mode control for underactuated aerial flexible joint robots manipulators. Drones., 6(12), 428.

    Google Scholar 

  3. Chen, Z., Gao, F., Sun, Q., Tian, Y., Liu, J., & Zhao, Y. (2019). Ball-on-plate motion planning for six-parallel-legged robots walking on irregular terrains using pure haptic information. Mechanism and Machine Theory., 141, 136–150.

    Google Scholar 

  4. de Carvalho, J. A., Angelico, B. A., Justo, J. F., de Oliveira, A. M., & da Silva Filho, J. I. (2023). Model reference control by recurrent neural network built with paraconsistent neurons for trajectory tracking of a rotary inverted pendulum. Applied Soft Computing., 133, 109927.

    Google Scholar 

  5. Wiebe, F., Kumar, S., Shala, L. J., Vyas, S., Javadi, M., Kirchner, F., (2023). Open source dual-purpose Acrobot and Pendubot platform: Benchmarking control algorithms for underactuated robotics. IEEE Robotics & Automation Magazine. 1–13.

  6. Pan, C., Cui, C., Zhou, L., Xiong, P., & Li, Z. (2022). A model-free output feedback control approach for the stabilization of underactuated TORA system with input saturation. Actuators., 11(3), 97.

    Google Scholar 

  7. Zhao, H., Liu, W., Chen, X., & Sun, H. (2023). Adaptive robust constraint-following control for underactuated unmanned bicycle robot with uncertainties. ISA Transactions., 121, 105064.

    Google Scholar 

  8. Ur Rehman, F., & Mahmood, A. (2023). Adaptive sliding mode-based full-state stabilization control of an underactuated hovercraft. International Journal of Dynamics and Control., 12(5), 1512–1521.

    Google Scholar 

  9. Kashyap, A. K., Parhi, D. R., & Pandey, A. (2022). Multi-objective optimization technique for trajectory planning of multi-humanoid robots in cluttered terrain. ISA Transactions., 125, 591–613.

    Google Scholar 

  10. Kulathunga, G., Devitt, D., & Klimchik, A. (2022). Trajectory tracking for quadrotors: An optimization-based planning followed by controlling approach. Journal of Field Robotics., 39(7), 1001–1011.

    Google Scholar 

  11. Barato, F., Toson, E., & Pavarin, D. (2021). Variations and control of thrust and mixture ratio in hybrid rocket motors. Advances in Astronautics Science and Technology., 4, 55–76.

    Google Scholar 

  12. Kovalev, A., Tian, Y., & Meng, Y. (2024). Prediction of ball-on-plate friction and wear by ANN with data-driven optimization. Friction., 12(6), 1235–1249.

    Google Scholar 

  13. Liu, S., Zhang, L., Niu, B., Zhao, X., & Ahmad, A. M. (2022). Adaptive neural finite-time hierarchical sliding mode control of uncertain under-actuated switched nonlinear systems with backlash-like hysteresis. Information Sciences., 599, 147–169.

    Google Scholar 

  14. Chen, X., Zhao, H., Sun, H., Zhen, S., & Al-Mamun, A. (2022). Optimal adaptive robust control based on cooperative game theory for a class of fuzzy underactuated mechanical systems. IEEE Transactions on Cybernetics., 52(5), 3632–3644.

    Google Scholar 

  15. Shuprajhaa, T., Sujit, S. K., & Srinivasan, K. (2022). Reinforcement learning based adaptive PID controller design for control of linear/nonlinear unstable processes. Applied Soft Computing., 128, 109450.

    Google Scholar 

  16. Hammadih, M. L., Al Hosani, K., & Boiko, I. (2016). Interpolating sliding mode observer for a ball and beam system. International Journal of Control., 89(9), 1879–1889.

    MathSciNet  Google Scholar 

  17. Yang, T., Chen, H., Sun, N., & Fang, Y. (2022). Adaptive neural network output feedback control of uncertain underactuated systems with actuated and unactuated state constraints. IEEE Transactions on Systems, Man, and Cybernetics., 52(11), 7027–7043.

    Google Scholar 

  18. Jang, H. G., Hyun, C. H., & Park, B. S. (2021). Neural network control for trajectory tracking and balancing of a ball-balancing robot with uncertainty. Applied Sciences., 11(11), 4739.

    Google Scholar 

  19. Kong, S., Sun, J., Qiu, C., Wu, Z., & Yu, J. (2021). Extended state observer-based controller with model predictive governor for 3-D trajectory tracking of underactuated underwater vehicles. IEEE Transactions on Industrial Informatics., 17(9), 6114–6124.

    Google Scholar 

  20. Liang, H., Li, H., & Xu, D. (2021). Non-linear model predictive trajectory tracking control of underactuated marine vehicles: Theory and experiment. IEEE Transactions on Industrial Electronics., 68(5), 4238–4248.

    Google Scholar 

  21. Zaare, S., & Soltanpour, M. R. (2021). The position control of the ball and beam system using state-disturbance observe-based adaptive fuzzy sliding mode control in presence of matched and mismatched uncertainties. Mechanical Systems and Signal Processing., 150, 107243.

    Google Scholar 

  22. Elshamy, M. R., Nabil, E., Abdelmageed, A. S., Abozalam, B., (2021). Stabilization enhancement of the ball on the plate system (BOPS) based on Takagi-Sugeno (T-S) fuzzy modeling. Proceedings of the 2nd IEEE International Conference on Electronic Engineering (ICEEM). 3–4.

  23. Das, A., & Roy, P. (2017). Improved performance of cascaded fractional-order SMC over cascaded SMC for position control of a ball and plate system. IETE Journal of Research., 63(2), 238–247.

    Google Scholar 

  24. Udekwe, D., Ajayi, O. O., Ubadike, O., Ter, K., & Okafor, E. (2024). Comparing actor-critic deep reinforcement learning controllers for enhanced performance on a ball-and-plate system. Expert Systems with Applications., 245, 123055.

    Google Scholar 

  25. Yépez Ponce, D. F., Montalvo López, W. M. (2021). Development of a Hybrid Optimization Strategy Based on a Bacterial Foraging Algorithm (BFA) and a Particle Swarming Algorithm (PSO) to Tune the PID Controller of a Ball and Plate System. Multidisciplinary International Congress on Science and Technology. 15–29.

  26. Mahmoodabadi, M. J., & Andalib Sahnehsaraei, M. (2021). Parametric uncertainty handling of under-actuated nonlinear systems using an online optimal input–output feedback linearization controller. Systems Science and Control Engineering., 9(1), 209–218.

    Google Scholar 

  27. Borah, M., Roy, P., & Krishna, B. (2018). Enhanced performance in trajectory tracking of a ball and plate system using fractional order controller. IETE Journal of Research., 64, 1343157.

    Google Scholar 

  28. Mohammadi, A., & Ryu, J. C. (2020). Neural network-based PID compensation for nonlinear systems: Ball-on-plate example. International Journal of Dynamics and Control., 8(1), 178–188.

    MathSciNet  Google Scholar 

  29. Elshamy, M. R., Nabil, E., Sayed, A., & Abozalam, B. (2021). Enhancement of the Ball Balancing on the Plate using hybrid PD/Machine learning techniques. Journal of Physics: Conference Series., 2128(1), 012028.

    Google Scholar 

  30. Sun, S., & Li, L. (2012). The study of ball and plate system based on non-linear PID. Applied Mechanics and Materials, 187, 134–137.

    Google Scholar 

  31. Mochizuki, S., & Ichihara, H. (2013). Generalized Kalman-Yakubovich Popov lemma based I-PD controller design for ball and plate system. Journal of Applied Mathematics. https://doi.org/10.1155/2013/85463116

    Article  MathSciNet  Google Scholar 

  32. Hadoune, O., Benouaret, M., Zeghida, A., Saker, H. (2021). Tracking control of a ball on plate system using PID controller and Lead/Lag compensator with a double loop feedback scheme. European Journal of Science and Technology. 375–380.

  33. Fan, X., Zhang, N., & Teng, S. (2004). Trajectory planning and tracking of ball and plate system using hierarchical fuzzy control scheme. Fuzzy Sets Systems, 144(2), 297–312.

    MathSciNet  Google Scholar 

  34. Yuan, D., & Zhang, Z. (2010). Modelling and control scheme of the ball-plate trajectory-tracking pneumatic system with a touch screen and a rotary cylinder. IET Control Theory and Applications, 4(4), 573–589.

    Google Scholar 

  35. Sumega, M., Gorel, L., Varecha, P., Zossak, S. and Makys, P. (2018). Experimental study of ball on plate platform. ELEKTRO 1–5.

  36. Swarnkar, S. (2011). Controller design for ball beam system using various control techniques (M.Tech dissertation, IIT Roorkee).

  37. Da Silveira, C. R., Flores, J. V., Salton, A. T., & Pereira, L. F. A. (2014). A comparative analysis of repetitive and resonant controllers to a servo-vision ball and plate system. IFAC Proceedings Volumes, 19, 1120–1125.

    Google Scholar 

  38. Srivastava, V., & Srivastava, S. (2022). Hybrid optimization based PID control of ball and beam system. Journal of Intelligent and Fuzzy Systems., 42(2), 919–928.

    Google Scholar 

  39. Oglah, A. A., & Msallam, M. M. (2021). Real-time implementation of Fuzzy Logic Controller based on chicken swarm optimization for the ball and plate system. International Review of Applied Sciences and Engineering., 13(3), 263–271.

    Google Scholar 

  40. Yousufzai, I. K., Waheed, F., Khan, Q., Bhatti, A. I., Ullah, R., & Akmeliawati, R. (2021). A linear parameter varying strategy based integral sliding mode control protocol development and its implementation on ball and beam balancer. IEEE Access., 9, 74437–74445.

    Google Scholar 

  41. Zakeri, E., Moezi, S. A., & Eghtesad, M. (2019). Optimal interval type-2 fuzzy fractional order super twisting algorithm: A second order sliding mode controller for fully-actuated and under-actuated nonlinear systems. ISA Transactions., 85, 13–32.

    Google Scholar 

  42. Ho, M.-T., Rizal, Y., & Chu, L.-M. (2013). Visual servoing tracking control of a ball and plate system: Design, implementation and experimental validation. International Journal of Advanced Robotics Systems, 10(7), 287.

    Google Scholar 

  43. Do, V. T., Lee, S. G., & Kim, J. H. (2020). Robust integral backstepping hierarchical sliding mode controller for a ballbot system. Mechanical Systems and Signal Processing., 144, 106866.

    Google Scholar 

  44. Kassem, A., Haddad, H., & Albitar, C. (2015). Comparison between different methods of control of ball and plate system with 6DOF Stewart platform. IFAC-PapersOnLine., 48, 47–52.

    Google Scholar 

  45. Escobar, L. M., Gordón, M., Quintero, O. C., Rosales, A., Pozo, D. (2017). A comparative analysis among different controllers applied to the experimental ball and plate system. IEEE International Conference on Information Systems and Computer Science (INCISCOS). 108–114.

  46. Doostdar, F., & Mojallali, H. (2022). An ADRC-based backstepping control design for a class of fractional-order systems. ISA Transactions., 121, 140–146.

    Google Scholar 

  47. Velasco, J., Barambones, Ó., Calvo, I., Venegas, P., & Napole, C. M. (2022). Validation of a Stewart platform inspection system with an artificial neural network controller. Precision Engineering., 74, 369–381.

    Google Scholar 

  48. Saleem, M. K., Shahid, M. L., Nouman, A., Zaki, H., & Tariq, M. A. (2022). Design and implementation of adaptive neuro-fuzzy inference system for the control of an uncertain ball and beam apparatus. Mehran University Research Journal of Engineering and Technology., 41(2), 178–184.

    Google Scholar 

  49. Kan, D., Xing, B., Xie, W., & Zhu, L. (2022). A minimum phase output based tracking control of ball and plate systems. International journal of dynamics and control., 10(2), 462–472.

    MathSciNet  Google Scholar 

  50. Hesser, D. F., Mostafavi, S., Kocur, G. K., & Markert, B. (2021). Identification of acoustic emission sources for structural health monitoring applications based on convolutional neural networks and deep transfer learning. Neurocomputing, 453, 1–12.

    Google Scholar 

  51. Chavez, D. (2023). Design and development of Neuromorphic estimation and control algorithms for the ball on plate Testbed (Doctoral dissertation, New Mexico State University).

  52. Kravets, P., & Shymkovych, V. (2020). Hardware implementation neural network controller on FPGA for stability ball on the platform. Advances in Computer Science for Engineering and Education, II, 247–256.

    Google Scholar 

  53. Hadoune, O., & Benouaret, M. (2022). ANFIS multi-tasking algorithm implementation scheme for ball-on-plate system stabilization. Indonesian Journal of Electrical Engineering and Informatics (IJEEI)., 10(4), 983–995.

    Google Scholar 

  54. Tomar, B., Kumar, N., & Sreejeth, M. (2023). Real-time balancing and position tracking control of 2-DOF ball balancer using PID with integral ANTI-WINDUP controller. Journal of Vibration Engineering & Technologies. 1–17.

  55. Lévis, M., & Lee, T. (2010). Peripherals to accelerate control system design and implementation. Quanser Inc., from https://www.quanser.com/wp-content/uploads/2017/04/Quanser_Peripherals_high_res_Final.pdf

Download references

Funding

The authors received no specific funding for this study.

Author information

Authors and Affiliations

Authors

Contributions

All authors read and approved the final manuscript.

Corresponding author

Correspondence to Basant Tomar.

Ethics declarations

Competing Interests

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Code Availability

Code is available.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomar, B., Kumar, N. & Sreejeth, M. Augmentation in Performance of Real-Time Balancing and Position Tracking Control for 2-DOF Ball Balancer System Using Intelligent Controllers. Wireless Pers Commun 138, 2227–2257 (2024). https://doi.org/10.1007/s11277-024-11591-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-024-11591-5

Keywords

Navigation