Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Extended Investigations on a Compact, Isolation Enhanced, Printed MIMO Antenna for Higher Band 5G

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The design of a printed 5G-MIMO antenna is an emerging research topic in networking and communication domain. In this script, a compact, printed, isolation enhanced, Multiple-Input-Multiple-Output or MIMO antenna for various 5G applications has been investigated. The antenna presented here is just 20 × 20 × 1 mm3 (1.87λ × 1.87λ × 0.09λ, λ being the wavelength of free space) in dimension. RT/duroid-5880 has been utilized as a substrate material. Two copper radiators, have been orthogonally positioned on the top of 1.0 mm thick substrate, for achieving diversity in polarization and radiation pattern. A bifurcated arrow shaped parasitic structure, has been placed between the radiators for isolation enhancement. The final antenna structure reflected a wide bandwidth of 28–56 GHz. The proposed antenna is applicable for 29.1–29.25 GHz, 31.0–31.3 GHz, 37.0–38.6 GHz, 38.6–40.0 GHz, and 42.0–42.5 GHz bands of 5G spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are not publicly available, but are available from the corresponding author on reasonable request.

References

  1. Marcus, M. (2015). 5G and IMT for 2020 and beyond. IEEE Wireless Communications, 1–3.

  2. Zhang, Y., Deng, J., Li, M., Sun, D., Guo, L., & Dielec, A. M. I. M. O. (2019). MIMO dielectric resonator antenna with improved isolation for 5G mm-wave applications. IEEE Antennas and Wireless Propagation Letters, 18(4), 747–751.

    Article  Google Scholar 

  3. Sharawi, M., Ikram, M., & Shamim, A. (2017). A two concentric slot loop based connected array MIMO antenna system for 4G/5G terminals. IEEE Transactions on Antennas and Propagation, 65(12), 6679–6686.

    Article  Google Scholar 

  4. Chang, L., Yu, Y., Wei, K., & Wang, H. (2019). Polarization-orthogonal co-frequency dual antenna pair suitable for 5G MIMO smartphone with metallic bezels. IEEE Transactions on Antennas and Propagation, 67(8), 5212–5220.

    Article  Google Scholar 

  5. Shoaib, N., Shoaib, S., Khattak, R., Shoaib, I., Chen, X., & Perwaiz, A. (2018). MIMO antennas for 5G devices. IEEE Access, 6, 77014–77021.

    Article  Google Scholar 

  6. Alhalabi, R., & Rebeiz, G. (2008). High-efficiency angled-dipole antennas for millimeter-wave phased array applications. IEEE Transactions on Antennas and Propagation, 56(10), 3136–3142.

    Article  Google Scholar 

  7. Deal, W., Kaneda, N., Sor, J., Qian, Y., & Itoh, T. (2000). A new quasi-Yagi antenna for planar active antenna arrays. IEEE Transactions on Microwave Theory and Techniques, 48(6), 910–918.

    Article  Google Scholar 

  8. Edward, B., & Rees, D. (1987). A broadband printed dipole with integrated balun. Microwave Journal, 30, 339–344.

    Google Scholar 

  9. Chattha, H. (2019). Compact high isolation wideband 4G and 5G multi-input multioutput antenna system for handheld and internet of things applications. The International Journal of RF and Microwave Computer-Aided Engineering., 29, e21710.

    Article  Google Scholar 

  10. Komandla, M., Mishra, G., & Sharma, S. (2017). Investigations on dual slant polarized cavity-backed massive MIMO antenna with beamforming. IEEE Transactions on Antennas and Propagation, 65(12), 6794–6799.

    Article  Google Scholar 

  11. Ojaroudiparchin, N., Shen, M., & Pedersen, G. (2018). Small-size tapered slot antenna (TSA) design for use in 5G phased array applications. Applied Computational Electromagnetics Society Journal, 32, 193–202.

    Google Scholar 

  12. Zhang, S., Chen, X., Syrytsin, I., & Pedersen, G. (2017). A switchable 3-D-coverage phased antenna and its effects for 28-GHz mobile app. IEEE Transactions on Antennas and Propagation, 65(12), 6413–6421.

    Article  Google Scholar 

  13. Nor, N., Jamaluddin, M., Kamarudin, M., & Khalily, M. (2016). Rectangular dielectric resonator antenna array for 28 GHz applications. Progress in Electromagnetics Research C, 63, 53–61.

    Article  Google Scholar 

  14. Ershadi, S., Keshtkar, A., Abdelrahman, A., & Xin, H. (2017). Wideband high gain antenna subarray for 5G applications. Progress in Electromag. Research C, 78, 33–46.

    Article  Google Scholar 

  15. Jilani, S., & Alomainy, A. (2018). Millimetre-wave T-shaped MIMO antenna with defected ground structures for 5G cellular networks. IET Microwaves, Antennas and Propagation, 12(5), 672–677.

    Article  Google Scholar 

  16. Abbas, E., Ikram, M., Mobashsher, A., & Abbosh, A. (2019). MIMO antenna system for multi-band millimeter-wave 5G and wideband 4G mobile communications. IEEE Access, 7, 181916–181923.

    Article  Google Scholar 

  17. Bhattacharya, A., Roy, B., Chowdhury, S. K., & Bhattacharjee, A. K. (2022). An isolation enhanced, printed, low-profile UWB-MIMO antenna-with unique dual band-notching features for WLAN and WiMAX. IETE Journal of Research, 68(1), 496–503.

    Article  Google Scholar 

  18. Kaur, H., Singh, H., & Upadhyay, R. (2023). Design and analysis of planar four-port UWB-MIMO antenna with band-rejection capability. International Journal of Microwave and Wireless Technologies. https://doi.org/10.1017/S175907872300065X

    Article  Google Scholar 

  19. Kumar, D. R., Sangeetha, T., Narayan, K. S., Babu, G. V., Prithivirajan, V., & Manikandan, M. S. (2023). A miniaturized CPW-fed CSRR-loaded quad-port MIMO antenna for 5.5/6.5 GHz wireless applications. International Journal of Microwave and Wireless Technologies. https://doi.org/10.1017/S175907872300082X

    Article  Google Scholar 

  20. Addepalli, T. (2023). Compact MIMO diversity antenna for 5G Sub: 6 GHz (N77/N78 and N79) and WLAN (Wi-Fi 5 and Wi-Fi 6) band applications. Wireless Personal Communications, 132, 2203–2223. https://doi.org/10.1007/s11277-023-10718-4

    Article  Google Scholar 

  21. Talha, M., Babu, M., & Aldhaheri, R. (2016). Design of compact MIMO antenna system with reduced mutual coupling. International Journal of Wireless and Microwave Technologies., 8, 117–124.

    Article  Google Scholar 

  22. Bang, J., & Choi, J. (2018). A SAR reduced mm-wave beam-steerablearray antenna with dual-mode operation for fully metal-covered 5G cellular handsets. IEEE Transactions on Antennas and Propagation, 17, 1118–1122.

    Google Scholar 

  23. Das, G., Sharma, A., Gangwar, R., & Sharawi, M. (2018). Compact back to-back DRA-based four-port MIMO antenna system with bi-directional diversity. Electronics Letters, 54, 884–886.

    Article  Google Scholar 

  24. Sun, L., Feng, H., Li, Y., & Zhang, Z. (2018). Tightly arranged orthogonal mode antenna for 5G MIMO mobile terminal. Microwave and Optical Technology Letters, 60, 1751–1756.

    Article  Google Scholar 

  25. Sun, K., Yang, D., & Liu, S. (2018). A wideband hybrid feeding magneto-electric dipole antenna for 5G Wi-Fi. Microwave and Optical Technology Letters, 60, 1837–1842.

    Article  Google Scholar 

  26. Lim, S., Choi, W., & Yoon, Y. J. (2015). Miniaturized radio frequency choke using modified stubs for high isolation in MIMO systems. Journal of Electromagnetic Engineering and Science, 15, 219–223.

    Article  Google Scholar 

  27. Li, G., Zhai, H., Ma, Z., Liang, C., Yu, R., & Liu, S. (2014). Isolation-improved dual-band MIMO antenna array for LTE/WiMAX mobile terminals. IEEE Antennas and Wireless Propagation Letters, 13, 1128–1131.

    Article  Google Scholar 

  28. Ardakani, M., & Amiri, R. (2017). Mutual coupling reduction of closely spaced MIMO antenna using frequency selective surface based on meta-materials. ACES Journal, 32, 1064–1068.

    Google Scholar 

  29. Cho, Y., Kim, K., Choi, D., Lee, S., & Park, S. (2006). A UWB planar monopole antenna with 5.0 GHz band-rejection filter and the time-domain characteristics. IEEE Transactions on Antennas and Propagation, 54, 1453–1460.

    Article  Google Scholar 

  30. Jan, J., & Kao, J. (2007). Novel wideband rhombus like slot antenna with an offset microstrip fed line. IEEE Antennas and Wireless Propagation Letters, 6, 249–251.

    Article  Google Scholar 

  31. Rehman, S., Sheta, A., & Alkanhal, M. (2011). Compact bandpass filters with bandwidth control using DGS. Applied Computational Electromagnetics Society (ACES) Journal, 26, 624–630.

    Google Scholar 

  32. Ding, K., Gao, C., Qu, D., & Yin, Q. (2017). Compact broadband MIMO antenna with parasitic strip. IEEE Antennas and Wireless Propagation Letters, 16, 2349–2353.

    Article  Google Scholar 

  33. Chen, Y., Wang, L., & Liu, Y. (2002). Two-port calibration of test fixtures with different test ports. Microwave and Optical Technology Letters, 35, 299–302.

    Article  Google Scholar 

  34. Balanis, C. (1997). Antenna theory: Analysis & design. New York: Wiley.

    Google Scholar 

  35. Clarke, R. (1968). A statistical theory of mobile reception. Bell Systems Technical Journal, 47, 957–1000.

    Article  Google Scholar 

  36. Biswas, A., Pattanayak, S., & Chakraborty, U. (2020). Evaluation of dielectric properties of colored resin plastic button to design a small MIMO antenna. IEEE Transactions on Instrumentation and Measurement. https://doi.org/10.1109/TIM.2020.2999736

    Article  Google Scholar 

  37. Karaboilis, M., Soras, C., Tsachtsiris, G., & Makios, V. (2004). Compact dual printed inverted-F antenna diversity system for portable wireless device. IEEE Antennas and Wireless Propagation Letters, 3, 9–14.

    Article  Google Scholar 

  38. Sharawi, M. (2014). Printed MIMO antenna engineering. Boston: Artech House.

    Google Scholar 

  39. Bhattacharya, A., Roy, B., & Bhattacharjee, A. K. (2021). Compact, isolation enhanced, band-notched SWB–MIMO antenna suited for wireless personal communications. Wireless Personal Communications, 116, 1575–1592. https://doi.org/10.1007/s11277-020-07749-6

    Article  Google Scholar 

Download references

Funding

No funding has been received for this work.

Author information

Authors and Affiliations

Authors

Contributions

Ankan Bhattacharya has done the primary investigation. Bappadittya Roy has done the literature review. Arnab De and Ujjal Chakraborty have done the fabrication and measurements. Saurav Mallik has performed the data analysis of the work.

Corresponding author

Correspondence to Ankan Bhattacharya.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacharya, A., Roy, B., De, A. et al. Extended Investigations on a Compact, Isolation Enhanced, Printed MIMO Antenna for Higher Band 5G. Wireless Pers Commun 134, 1093–1117 (2024). https://doi.org/10.1007/s11277-024-10964-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-024-10964-0

Keywords

Navigation