Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

A Metamaterial Inspired Low-Scattering Electric Quadrupole Antenna

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This paper explores a novel metamaterial-inspired low-scattering electric quadrupole antenna in the microwave regime. The metasurface unit cell used here is the well-known stacked dogbone doublet which is conventionally used to get electric and magnetic resonances under plane wave illumination. An offset in the position of the upper dogbone metallization results in the excitation of the higher-order high-Q electric quadrupole resonance having insignificant scattering in comparison with the fundamental resonances. This unit cell is hence used as the base element of an antenna and electric quadrupole resonance is excited using direct probe feed while the fundamental electric and magnetic resonances are suppressed. The fabricated antenna shows a 2:1 VSWR bandwidth of 4% and a measured radiation efficiency of 42% around resonance. The experimental studies are conducted inside an anechoic chamber using a vector network analyzer, computational studies are performed using the full-wave CST Microwave Studio and these results are validated using the multipole scattering theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig.2
Fig.3
Fig.4
Fig.5
Fig.6
Fig.7
Fig.8
Fig.9
Fig.10
Fig.11
Fig.12

Similar content being viewed by others

Data Availability

Data will be available from the authors upon reasonable request.

References

  1. Bohren, C. F., & Huffman, D. R. (1983). Absorption and scattering of light by small particles. Wiley.

    Google Scholar 

  2. Kerker, M., Wang, D. S., & Giles, L. (1983). Electromagnetic scattering by magnetic spheres. Journal of the Optical Society of America, 73, 765–767. https://doi.org/10.1364/JOSA.73.000765

    Article  Google Scholar 

  3. Zhu, B. O., Zhao, J., & Feng, Y. (2013). Active impedance metasurface with full 3600 reflection phase tuning. Nature Scientific Reports, 49, 1–6. https://doi.org/10.1038/srep03059

    Article  Google Scholar 

  4. Zhu, B. O., Chen, K., Jia, N., Sun, L., Zhao, J., Jiang, T., & Feng, Y. (2014). Dynamic control of electromagnetic wave propagation with the equivalent principle inspired tunable metasurface. Nature Scientific Reports, 4, 1–7. https://doi.org/10.1038/srep04971

    Article  Google Scholar 

  5. Shelby, R. A., Smith, D. R., & Shultz, S. (2001). Experimental verification of a negative index of refraction. Science, 292(5514), 77–79. https://doi.org/10.1126/science.1058847

    Article  Google Scholar 

  6. Eleftheriades, G. V., Iyer, A. K., & Kremer, P. C. (2002). Planar negative refractive index media using periodically L-C loaded transmission lines. IEEE Transactions on Microwave Theory and Techniques, 50(12), 2702. https://doi.org/10.1109/TMTT.2002.805197

    Article  Google Scholar 

  7. Shan, D., Wang, H., Cao, K., et al. (2022). Wireless power transfer system with enhanced efficiency by using frequency reconfigurable metamaterial. Scientific Reports, 12, 331. https://doi.org/10.1038/s41598-021-03570-8

    Article  Google Scholar 

  8. Fano, U. (1961). Effects of configuration interaction on intensities and phase shifts. Physical Review. American Physical Society (APS), 124(6), 1866–1878. https://doi.org/10.1103/physrev.124.1866

    Article  MATH  Google Scholar 

  9. Luk’yanchuk, B., Zheludev, N. I., Maier, S. A., Halas, N. J., Nordlander, P., Giessen, H., & Chong, C. T. (2010). The Fano resonance in plasmonic nanostructures and metamaterials. Nature Materials, 9(9), 707–715. https://doi.org/10.1038/nmat2810

    Article  Google Scholar 

  10. Wang, Z. B., Luk’yanchuk, B. S., Yue, L., Yan, B., Monks, J., Dhama, R., Minin, O. V., Minin, I. V., Huang, S., & Fedyanin, A. (2019). High order Fano resonances and giant magnetic fields in dielectric microspheres. Scientific Reports Springer Nature Limited., 9(1), 20293. https://doi.org/10.1038/s41598-019-56783-3

    Article  Google Scholar 

  11. Shafiei, F., Monticone, F., Le, K., et al. (2013). A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance. Nature Nanotech, 8, 95–99. https://doi.org/10.1038/nnano.2012.249

    Article  Google Scholar 

  12. Rybin, M. V., Kapitanova, P. V., Filonov, D. S., Slobozhanyuk, A. P., Belov, P. A., Kivshar, Y. S., & Limonov, M. F. (2013). Fano resonances in antennas: General control over radiation patterns. Physical Review B, 88, 205106. https://doi.org/10.1103/PhysRevB.88.205106

    Article  Google Scholar 

  13. Alù, A., & Maslovski, S. (2010). Power relations and a consistent analytical model for receiving wire antennas. IEEE Transactions on Antennas and Propagation, 58(5), 1436–1448. https://doi.org/10.1109/TAP.2010.2044354

    Article  MathSciNet  MATH  Google Scholar 

  14. Bach Andersen, J., & Frandsen, A. (2005). Absorption efficiency of receiving antennas. IEEE Transactions on Antennas and Propagation, 53, 2843–2849. https://doi.org/10.1109/TAP.2005.854532

    Article  Google Scholar 

  15. Kwon, D. H., & Pozar, D. M. (2009). Optimal characteristics of an arbitrary receive antenna. IEEE Trans. Antenn. Propag., 57, 3720–3727. https://doi.org/10.1109/TAP.2009.2025975

    Article  MathSciNet  MATH  Google Scholar 

  16. Andrea Alù and Nader Engheta, “Cloaking a Sensor”, Phys. Rev. Lett. 2009, 102, 233901. https://doi.org/10.1103/PhysRevLett.102.233901

  17. Alù, A., & Engheta, N. (2010). Cloaking a receiving antenna or a sensor with plasmonic metamaterials. Metamaterials, 4, 153–159. https://doi.org/10.1016/j.metmat.2010.03.005

    Article  Google Scholar 

  18. B Urul, H Dogan, IB Basyigit, A Genc (2022) A novel broadband double-ring holed element metasurface absorber to suppress EMI from PCB heatsinks. Turkish Journal of Electrical Engineering and Computer Sciences; 30: 2254–2267. https://doi.org/10.55730/1300-0632.3937

  19. Basyigit, I. B., Genc, A., & HelHel, S. (2019). Effect of orientation of RF sources maintained within the enclosures on electrical shielding effectiveness performance. Turkish Journal of Electrical Engineering & Computer Sciences., 27(4), 3088–3097. https://doi.org/10.3906/elk-1902-68

    Article  Google Scholar 

  20. Baccarelli, P., Capolino, F., Paulotto, S., & Yakovlev, A. B. (2011). “In-plane modal analysis of a metalayer formed by arrayed pairs of dogbone-shaped conductors. Metamaterials, 5(1), 26–35. https://doi.org/10.1016/j.metmat.2011.02.002

    Article  Google Scholar 

  21. Sarin, V. P., Pradeep, A., Jayakrishnan, M. P., Chandroth, A., Mohanan, P., & Vasudevan, K. (2016). Tailoring the spectral response of a dogbone doublet metamaterial. Microwave and Optical Technology Letters, 58(6), 1347–1353.

    Article  Google Scholar 

  22. Pushpakaran, S. V., SeidMuhammed, N. M., Raj, R. K., Pradeep, A., Mohanan, P., & Vasudevan, K. (2013). A compact stacked dipole antenna with directional radiation coverage for wireless communications. IEEE Antennas and Wireless Propagation Letters, 12, 841–844. https://doi.org/10.1109/LAWP.2013.2270951

    Article  Google Scholar 

  23. Pushpakaran, S. V., Raj, R. K., Vinesh, P. V., Dinesh, R., Mohanan, P., & Vasudevan, K. (2014). A metaresonator inspired dual band antenna for wireless applications. IEEE Transactions on Antennas and Propagation, 62(4), 2287–2291. https://doi.org/10.1109/TAP.2014.2301161

    Article  Google Scholar 

  24. Podolskiy, V. A., Sarychev, A. K., & Shalaev, V. M. (2002). Plasmon modes in metal nano wires and Left-handed materials. Journal of Nonlinear Optical Physics & Materials, 11, 65. https://doi.org/10.1142/S0218863502000833

    Article  Google Scholar 

  25. Grigorenko, A. N., Geim, A. K., Gleeson, H. F., Zhang, Y., Firsov, A. A., Khrushchev, I. Y., & Petrovic, J. (2005). Nanofabricated media with negative permeability at optical frequencies. Nature, 438, 335–338. https://doi.org/10.1038/nature04242

    Article  Google Scholar 

  26. Cho, D. J., Wang, F., Zhang, X., & RonShen, Y. (2008). Contribution of the electric quadrupole resonance in optical metamaterials. Physical Review B, 78, 121101. https://doi.org/10.1103/PhysRevB.78.121101

    Article  Google Scholar 

  27. Mitra, D., Paul, S., Bhattacharya, D., & Chaudhuri, S. R. B. (2013). Radiated power enhancement of quadrupole source using metamaterials. Microwave and Optical Technology Letters, 55(11), 2620–2624. https://doi.org/10.1002/mop.27901

    Article  Google Scholar 

  28. Soric, J., Ra’di, Y., Farfan, D., et al. (2022). Radio-transparent dipole antenna based on a metasurface cloak. Nature Communications, 13, 1114. https://doi.org/10.1038/s41467-022-28714-w

    Article  Google Scholar 

  29. Monti, A., Soric, J., Alù, A., Toscano, A., & Bilotti, F. (2016). Design of cloaked yagi-uda antennas. EPJ Applied Metamaterials, 3, 10. https://doi.org/10.1051/epjam/2016012

    Article  Google Scholar 

  30. Afanasiev, G. N., & Stepanovsky, Y. P. (1995). The electromagnetic field of elementary time-dependent toroidal sources. Journal of Physics A: Mathematical and General, 28, 4565. https://doi.org/10.1088/0305-4470/28/16/014

    Article  MathSciNet  MATH  Google Scholar 

  31. Hinamoto, T., & Fujii, M. (2021). MENP: An open-source MATLAB implementation of multipole expansion for nanophotonics. Optica, 4, 1640–1648. https://doi.org/10.1364/OSAC.425189

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the research funding received from the Science and Engineering Research Board (SERB), Department of Science and Technology, for the major research project ECR/2017/002204.

Author information

Authors and Affiliations

Authors

Contributions

VPS contributed to writing-reviewing, conceptualization, methodology, and editing of this manuscript. RKR involved in the simulation and final manuscript writing. VK and PSS contributed to data curation, simulation and formal analysis. All writers read and approved the final manuscript.

Corresponding author

Correspondence to V. P. Sarin.

Ethics declarations

Conflicts of Interest

This manuscript has not been published and is not under consideration for publication elsewhere. We have no conflicts of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research work was done at the Electronics Lab, Govt. College Chittur, Palakkad, Kerala.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarin, V.P., Raj, R.K., Sreekala, P.S. et al. A Metamaterial Inspired Low-Scattering Electric Quadrupole Antenna. Wireless Pers Commun 132, 131–145 (2023). https://doi.org/10.1007/s11277-023-10595-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-023-10595-x

Keywords

Navigation