Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Design of Quantum Communication Protocols in Quantum Cryptography

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Secure communication has developed into one of the most promising disciplines in the contemporary world. This is a highly essential subject for every business and body, and its advancements are increasing significantly. Quantum computing is becoming an increasingly popular kind of contemporary computing. This type of computing makes advantage of the fundamental characteristics of quantum mechanics to process information. Certain of the problems that were present in classical computing, such as the factoring discrete logarithm problem, have already been addressed by some writers in the field of quantum computing QC. Another significant challenge faced by conventional computing is one related to security, which may now be addressed thanks to quantum cryptography protocols. However, researchers have recently shown that even quantum encryption may be vulnerable to hacking. Implementing protocols for quantum cryptography still comes with a number of significant challenges, the most significant of which being quantum bit errors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data Availability

Not applicable.

References

  1. Dunjko, V., & Briegel, H. J. (2018). Machine learning & artificial intelligence in the quantum domain: A review of recent progress. Reports on Progress in Physics, 81(7), 074001.

    Article  MathSciNet  Google Scholar 

  2. Argüelles, C. A., & Jones, B. J. P. (2019). Neutrino oscillations in a quantum processor. Physical Review Research, 1, 033176.

    Article  Google Scholar 

  3. Wehner, S., Elkouss, D., & Hanson, R. (2018). Quantum internet: A vision for the road ahead. Science, 362(6412), 9288.

    Article  MathSciNet  MATH  Google Scholar 

  4. Ren, J. G., Ping, X., Yong, H. L., Zhang, L., Liao, S. K., Yin, J., Liu, W. Y., Cai, W. Q., Yang, M., Li, L., Yang, K. X., Han, X., Yao, Y. Q., Li, J., Hai-Yan, W., Wan, S., Liu, L., Liu, D. Q., Kuang, Y. W., Pan, J. W. (2017). Ground-to-satellite quantum teleportation. Nature, 549(7670), 70–73. https://doi.org/10.1038/nature23675

    Article  Google Scholar 

  5. Nandi, K., & Mazumdar, C. (2014). Quantum teleportation of a two qubit state using GHZ-like state. International Journal of Theoretical Physics, 53(4), 1322–1324.

    Article  MATH  Google Scholar 

  6. Bennett, C. H., & Brassard, G. (2014). Quantum cryptography: Public key distribution and coin tossing. Theoretical Computer Science, 560, 7–11.

    Article  MathSciNet  MATH  Google Scholar 

  7. Hassanpour, S., & Houshmand, M. (2015). Efficient controlled quantum secure direct communication based on GHZ-like states. Quantum Information Processing, 14(2), 739–753.

    Article  MathSciNet  MATH  Google Scholar 

  8. Wang, J., Li, L., Peng, H., & Yang, Y. (2017). Quantum-secret-sharing scheme based on local distinguishability of orthogonal multiqudit entangled states. Physical Review A. https://doi.org/10.1103/PhysRevA.95.022320

    Article  Google Scholar 

  9. Matsumoto, R. (2017). Unitary reconstruction of secret for stabilizer-based quantum secret sharing. Quantum Information Processing, 16(8), 202.

    Article  MathSciNet  MATH  Google Scholar 

  10. Lu, H., Zhang, Z., Chen, L. K., Li, Z. D., Liu, C., Li, L., Liu, N. L., Ma, X., Chen, Y. A., & Pan, J. W. (2016). Secret sharing of a quantum state. Physical Review Letters, 117(3), 030501.

    Article  Google Scholar 

  11. Gravier, S., Javelle, J., Mhalla, M., & Perdrix, S. (2015). On weak odd domination and graph-based quantum secret sharing. Theoretical Computer Science, 598, 129–137. https://doi.org/10.1016/j.tcs.2015.05.038

    Article  MathSciNet  MATH  Google Scholar 

  12. Diep, D. N., Giang, D. H., & Phu, P. H. (2018). Application of quantum gauss-jordan elimination code to quantum secret sharing code. International Journal of Theoretical Physics, 57(3), 841–847.

    Article  MathSciNet  MATH  Google Scholar 

  13. Abulkasim, H., Hamad, S., & Elhadad, A. (2018). Reply to Comment on ‘Authenticated quantum secret sharing with quantum dialogue based on Bell states.’ Physica Scripta, 93(2), 027001.

    Article  Google Scholar 

  14. Gao, G., Wang, Y., Wang, D., & Ye, L. (2018). Comment on ‘Authenticated quantum secret sharing with quantum dialogue based on Bell states. Physica Scripta, 93(2), 027002.

    Article  Google Scholar 

  15. Liu, Z.-M., & Zhou, L. (2014). Quantum teleportation of a three-qubit state using a five-qubit cluster state. International Journal of Theoretical Physics, 53(12), 4079–4082.

    Article  MATH  Google Scholar 

  16. Liao, C.-H., Yang, C.-W., & Hwang, T. (2014). Dynamic quantum secret sharing protocol based on GHZ state. Quantum Information Processing, 13(8), 1907–1916.

    Article  MATH  Google Scholar 

  17. Zhang, J.-L., Zhang, J.-Z., & Xie, S.-C. (2018). A Choreographed Distributed Electronic Voting Scheme. International Journal of Theoretical Physics, 57(9), 2676–2686.

    Article  MathSciNet  MATH  Google Scholar 

  18. Sharma, R. D., & De, A. (2016). Quantum voting using single qubits. Indian Journal of Science and Technology, 9(42), 032329.

    Google Scholar 

  19. Ghose, S., Kumar, A., & Hamel, A. M. (2014). Multiparty quantum communication using multiqubit entanglement and teleportation. Physics Research International, 2014, 1–8. https://doi.org/10.1155/2014/948750

    Article  Google Scholar 

  20. Tian, J.-H., Zhang, J.-Z., & Li, Y.-P. (2016). A voting protocol based on the controlled quantum operation teleportation. International Journal of Theoretical Physics, 55(5), 2303–2310.

    Article  MathSciNet  MATH  Google Scholar 

  21. Thapliyal, K., Sharma, R. D., & Pathak, A. (2016). Protocols for quantum binary voting. International Journal of Quantum Information, 15(01), 1750007.

    Article  MATH  Google Scholar 

  22. Cao, H.-J., Ding, L.-Y., Jiang, X.-L., & Li, P.-F. (2018). A new proxy electronic voting scheme achieved by six-particle entangled states. International Journal of Theoretical Physics, 57(3), 674–681. https://doi.org/10.1007/s10773-017-3597-y

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhang, J.-L., Xie, S.-C., & Zhang, J.-Z. (2017). An elaborate secure quantum voting scheme. International Journal of Theoretical Physics, 56(10), 3019–3028.

    Article  MATH  Google Scholar 

  24. Xue, P., & Zhang, X. (2017). A simple quantum voting scheme with multi-Qubit entanglement. Scientific Reports. https://doi.org/10.1038/s41598-017-07976-1

    Article  Google Scholar 

  25. Ballance, C. J., Harty, T. P., Linke, N. M., Sepiol, M. A., & Lucas, D. M. (2016). High-fidelity quantum logic gates using trapped-ion hyperfine Qubits. Physical Review Letters. https://doi.org/10.1103/PhysRevLett.117.060504

    Article  Google Scholar 

  26. Zhu, G., Subaşı, Y., Whitfield, J. D., & Hafezi, M. (2018). Hardware-efficient fermionic simulation with a cavity–qed system. Npj Quantum Information, 4(1), 1–10.

    Article  Google Scholar 

  27. Veldhorst, M., Eenink, H. G. J., Yang, C. H., & Dzurak, A. S. (2017). Silicon cmos architecture for a spin-based quantum computer. Nature Communications. https://doi.org/10.1038/s41467-017-01905-6

    Article  Google Scholar 

  28. Kleißler, F., Lazariev, A., & Arroyo-Camejo, S. (2018). Universal, high-fidelity quantum gates based on superadiabatic, geometric phases on a solid-state spin-Qubit at room temperature. Npj Quantum Information, 4(1), 1–6.

    Article  Google Scholar 

  29. Wendin, G. (2017). Quantum information processing with superconducting circuits: A review. Reports on Progress in Physics, 80(10), 106001.

    Article  MathSciNet  Google Scholar 

  30. Riedel, M. F., Binosi, D., Thew, R., & Calarco, T. (2017). The European quantum technologies flagship programme. Quantum Science and Technology, 2(3), 030501. https://doi.org/10.1088/2058-9565/aa6aca

    Article  Google Scholar 

  31. Raymer, M. G., & Monroe, C. (2019). The US national quantum initiative. Quantum Science and Technology, 4(2), 020504.

    Article  Google Scholar 

  32. Yin, J., Ren, J.G., Liao, S.K., Cao, Y., Cai, W.Q., Peng, C.Z. and Pan, J.W. (2019) Quantum science experiments with micius satellite. In 2019 Conference on Lasers and Electro-Optics (CLEO). pp 1–2, ISSN 2160-8989.

  33. Roberson, T. M., & White, A. G. (2019). Charting the Australian quantum landscape. Quantum Science and Technology, 4(2), 020505.

    Article  Google Scholar 

  34. Sussman, B., Corkum, P., Blais, A., Cory, D., & Damascelli, A. (2019). Quantum Canada. Quantum Science and Technology, 4(2), 020503.

    Article  Google Scholar 

  35. Yamamoto, Y., Sasaki, M., & Takesue, H. (2019). Quantum information science and technology in Japan. Quantum Science and Technology, 4(2), 020502.

    Article  Google Scholar 

  36. AlKawak, O. A., Ozturk, B. A., Jabbar, Z. S., & Mohammed, H. J. (2023). Quantum optics in visual sensors and adaptive optics by quantum vacillations of laser beams wave propagation apply in data mining. Optik, 273, 170396. https://doi.org/10.1016/j.ijleo.2022.170396

    Article  Google Scholar 

  37. Alomari, E. S., Nuiaa, R. R., Alyasseri, Z. A. A., Mohammed, H. J., Sani, N. S., Esa, M. I., & Musawi, B. A. (2023). Malware detection using deep learning and correlation-based feature selection. Symmetry, 15(1), 123.

    Article  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This work received no specific funding.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed significantly to the research and this paper, and the first author is the main contributor.

Corresponding author

Correspondence to Bilal A. Alhayani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest to report regarding the present study.

Informed Consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alhayani, B.A., AlKawak, O.A., Mahajan, H.B. et al. Design of Quantum Communication Protocols in Quantum Cryptography. Wireless Pers Commun (2023). https://doi.org/10.1007/s11277-023-10587-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11277-023-10587-x

Keywords

Navigation