Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Physical Layer Security Enhancement Using Reconfigurable Intelligent Surfaces and Multi-antenna Energy Harvesting

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this article, we suggest enhancing the physical layer security of wireless systems using reconfigurable intelligent surfaces (RIS). We compute the secrecy outage probability and the strictly positive secrecy capacity when the source S harvests power using \(n_r\) antennas and the signal of node N. The harvested power is used to broadcast a signal to the destination D that is also received by the eavesdropper E. The broadcasted signal by S is reflected by RIS so that all reflections have a zero phase at D. We also add RIS between N and S to increase the harvested power.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Code Availability

Software application and custom code are non available.

References

  1. Rains, J., ur Rehman Kazim, J., Tukmanov, A., Zhang, L., Abbasi, Q. H., & Imran, M. A. (2023). Intelligent reconfigurable surfaces (IRS) for prospective 6G wireless networks. IEEE.

  2. Sanchez, S. G., Reus-Muns, G., Bocanegra, C., Li, Y., Muncuk, U., Naderi, Y., Wang, Y., Ioannidis, S., & Chowdhury, K. R. (2022). AirNN: Over-the-air computation for neural networks via reconfigurable intelligent surfaces. IEEE/ACM Transactions on Networking, 6, 66.

    Google Scholar 

  3. Chen, Y., Wang, Y., & Wang, Z. (2022). Reconfigurable intelligent surface aided high-mobility millimeter wave communications with dynamic dual-structured sparsity. IEEE Transactions on Wireless Communications, 6, 66.

    Google Scholar 

  4. Chen, Z., Chen, L., Tian, Z., Wang, M., Jia, Y., & Dai, L. (2022). Ergodic rate of reconfigurable intelligent surface-assisted multigroup multicast system. IEEE Transactions on Vehicular Technology, 6, 66.

    Google Scholar 

  5. Zan, S., Pang, Y., Gravina, R., Cao, E., Li, Y., & Zang, W. (2022). A deep reinforcement learning based approach for intelligent reconfigurable surface elements selection. In 2022 IEEE international conference on dependable, autonomic and secure computing, international conference on pervasive intelligence and computing, international conference on cloud and big data computing, international conference on cyber science and technology congress (DASC/PiCom/CBDCom/CyberSciTech.

  6. Kumar, P., & Bhowmick, A. (2022). Outage performance of reconfigurable intelligent surface assisted D2D network. In 2022 IEEE 2nd Mysore sub section international conference (MysuruCon).

  7. Alexandropoulos, G., & Vlachos, E. (2020). A hardware architecture for reconfigurable intelligent surfaces with minimal active elements for explicit channel estimation. In ICASSP—IEEE international conference on acoustics, speech and signal processing (ICASSP), Barcelona (pp. 4–8).

  8. Huayan, G., Liang, Y. C., Chen, J., & Larsson, E. G. (2020). Weighted sum-rate maximization for reconfigurable intelligent surface aided wireless networks. IEEE Transactions on Wireless Communications, 19(5), 3064–3076.

    Article  Google Scholar 

  9. Vetrivel Chelian, T., & Thiruvengadam, S. J. (2020). BER analysis of reconfigurable intelligent surface assisted downlink power domain NOMA system. In 2020 International Conference on COMmunication Systems and NETworkS (COMSNETS), Bengaluru, India, January 5–9.

  10. Chandan, P., Ang, L., Lingyang, S., Vucetic, B., & Li, Y. (2020). Hybrid precoding design for reconfigurable intelligent surface aided mmWave communication systems. IEEE Wireless Communications Letters, 9(7), 1041–1045.

    Article  Google Scholar 

  11. Keke, Y., Zhen, G., Shanxiang, L., Yongpeng, W., Hua, W., & Alouini, M. S. (2020). GMD-based hybrid beamforming for large reconfigurable intelligent surface assisted millimeter-wave massive MIMO. IEEE Access, 8, 19530–19539.

    Article  Google Scholar 

  12. Liang, Y., Wang, G., & Ansari, I. S. (2020). Mixed dual-hop FSO-RF communication systems through reconfigurable intelligent surface. IEEE Communications Letters, 24(7), 1558–1562.

    Article  Google Scholar 

  13. Boya, D., Hongliang, Z., Lianlin, L., Lingyang, S., Yonghui, L., & Zhu, H. (2020). Practical hybrid beamforming with finite-resolution phase shifters for reconfigurable intelligent surface based multi-user communications. IEEE Transactions on Vehicular Technology, 69(4), 66.

    Google Scholar 

  14. Qurrat-Ul-Ain, N., Kammoun, A., Chaaban, A., Debbah, M., & Alouini, M. S. (2020). Asymptotic Max–Min SINR analysis of reconfigurable intelligent surface assisted MISO systems. IEEE Transactions on Wireless Communications, 19(12), 7748–7764.

    Article  Google Scholar 

  15. Wenjing, Z., Gongpu, W., Atapattu, A., Tsiftsis, T. A., & Tellambura, C. (2020). Is backscatter link stronger than direct link in reconfigurable intelligent surface-assisted system? IEEE Communications Letters, 24(6), 1342–1346.

    Article  Google Scholar 

  16. Sixian, L., Bin, D., Xiaojun, Y., Ying-Chang, L., & Di Renzo, M. (2020). Reconfigurable intelligent surface assisted UAV communication: Joint trajectory design and passive beamforming. IEEE Wireless Communications Letters, 9(5), 716–720.

    Article  Google Scholar 

  17. Sheng, H., & Yuanming, S. (2019). Reconfigurable intelligent surface for green edge inference in machine learning. In IEEE Globecom workshops (GC Wkshps).

  18. Chongwen, H., Alexandropoulos, G., Yuen, C., & Debbah, M. (2019). Indoor signal focusing with deep learning designed reconfigurable intelligent surfaces. In IEEE 20th international workshop on signal processing advances in wireless communications (SPAWC).

  19. Dai, L., Wang, B., Wang, M., Yang, X., Tan, J., Bi, S., Xu, S., Yang, F., Chen, Z., Di Renzo, M., Chae, C. B., & Lajos, H. (2020). Reconfigurable intelligent surface-based wireless communications: Antenna design, prototyping, and experimental results. IEEE Access, 8, 66.

    Google Scholar 

  20. Fang, D., Qian, Y., & Hu, R. Q. (2018). Security for 5G mobile wireless networks. IEEE Access, 6, 4850–4874.

    Article  Google Scholar 

  21. Bloch, M., & et Barros, J. (2011). Physical-layer security: From information theory to security engineering. Cambridge University Press.

  22. Yi, Z., Hui-Ming, W., & Qian, Y. (2016). Secrecy sum rate maximization in non-orthogonal multiple access. IEEE Communications Letters, 20(5), 930–933.

    Article  Google Scholar 

  23. Zhijin, Z., Yuanwei, L., & Ding, Z. (2016). Physical layer security for 5G non-orthogonal multiple access in large-scale networks. In IEEE international conference on communications (ICC) (pp. 1–6).

  24. Yuanwei, L., Zhijin, Q., & Elkashlan, M. (2017). Enhancing the physical layer security of non-orthogonal multiple access in large-scale networks. IEEE Transactions on Wireless Communications, 16(3), 1656–1672.

    Article  Google Scholar 

  25. Webb, H., Yin, C., Ngoc Nguyen, D., Tuan Nguyen Le, T., Van Do, H., Van Hoang, D., & Van Nguyen, N. (2020). Secrecy outage analysis in energy harvesting relay networks with a friendly jammer. In 4th International conference on recent advances in signal processing, telecommunications and computing (SigTelCom).

  26. Dang-Ngoc, H., Ho-Quoc, B., & Ho-Van, K. (2020). Key secrecy performance metrics of overlay networks with energy scavenging and artificial noise. In International conference on recent advances in signal processing, telecommunications and computing (SigTelCom).

  27. Phuc, V. T., Carrasco-Casado, A., Anh, T. P., & Toyoshima, M. (2020). Secrecy analysis of FSO systems considering misalignments and eavesdropper’s location. IEEE Transactions on Communications, 6, 66.

    Google Scholar 

  28. Sapna, T., Deepak, M., & Ravikant, S. (2020). Novel outage-aware NOMA protocol for secrecy fairness maximization among untrusted users. IEEE Transactions on Vehicular Technology, 6, 66.

    Google Scholar 

  29. Byungha, Y., In-Ho, L., & Haejoon, J. (2020). Exact secrecy rate analysis of antenna subset modulation schemes. IEEE Systems Journal, 6, 66.

    Google Scholar 

  30. Sunil, K., Ankit, G., & Manav, R. B. (2020). Physical layer secrecy performance analysis of imperfect feedback based 4 1 MISO system. In International conference on signal processing and communications (SPCOM).

  31. Bingtao, H., Lu, L., Long, Y., & Jian, C. (2020). Enhancing secrecy for NOMA untrusted relay networks with user scheduling and jamming. IEEE Communications Letters, 6, 66.

    Google Scholar 

  32. Khojastehnia, M., & Loyka, S. (2020). Comments on precoding for secrecy rate maximisation in cognitive MIMO wiretap channels. Electronics Letters, 56(17), 66.

    Article  Google Scholar 

  33. Li, C., He J., Liu, S., Guo, D., & Song, L. (2020). On secrecy key of a class of secure asymmetric multilevel diversity coding system. In IEEE international symposium on information theory (ISIT).

  34. Shkel, Y. Y., & Poor, H. V. (2020). A compression perspective on secrecy measures. In 2020 IEEE international symposium on information theory (ISIT).

  35. Alanazi, F. (2022). Physical layer security of cooperative wireless networks with RF energy harvesting. International Journal of Sensor Networks, 36(3), 174–179.

    Article  Google Scholar 

  36. Wells, W. T., Anderson, R. L., & Cell, J. W. (1962). The distribution of the product of two central or non-central Chi-square variates. The Annals of Mathematical Statistics, 33(3), 1016–1020.

    Article  MATH  Google Scholar 

Download references

Funding

This publication was supported by the Deanship of Scientific Research at Prince Sattam bin Abdulaziz University, Alkharj, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

This article is the contribution of Dr. Faisal Alanazi.

Corresponding author

Correspondence to Faisal Alanazi.

Ethics declarations

Conflict of interest

There is no conflict of interest for this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alanazi, F. Physical Layer Security Enhancement Using Reconfigurable Intelligent Surfaces and Multi-antenna Energy Harvesting. Wireless Pers Commun 130, 2715–2726 (2023). https://doi.org/10.1007/s11277-023-10400-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-023-10400-9

Keywords

Navigation